Homework Set 2

Reading Assignments Finish reading Chapter 3.

Written Assignments Do exercises 6, 8, 10, 23, 24, 28 in Section 3.6, plus the following special problem:

Special Problem (counted as two exercises) Recall that in the Job Offer Problem a sequence of \(n \) offers are sequentially made, and one has to make an on-the-spot decision whether to accept the current offer. Under the \(k \)-strategy, one passes on the initial \(k \) offers, and then accepts the first offer that is better than these \(k \) offers; in case no future offer is better than the first \(k \), then one just takes the very last offer. Assume that the relative merits of the offers are completely random. We have calculated and obtained in class a mathematical formula for \(r_{n,k} \), the probability of getting the best offer by using the \(k \)-strategy.

Now suppose we are less ambitious, and will be satisfied if the job we get is among the top two offers. Let \(q_{n,k} \) be the probability of achieving this goal under \(k \)-strategy. Note that clearly \(q_{n,k} \geq r_{n,k} \).

(a) What is the value of \(q_{4,2} \)? You should write down explicitly all 24 permutations, and indicate explicitly which ones result in a success by the 2-strategy.

(b) Derive a mathematical expression for \(q_{n,k} \). Check that it leads to the correct value for the case \(n = 4, k = 2 \).