Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions
Where We Are At

- We have learned the abstract **interface** presented by a machine: the instruction set architecture
- What we will learn: the **implementation** behind the interface:
 - Start with switching devices (such as transistors)
 - Build logic gates with transistors
 - Build combinational circuit (memory-less) devices using gates
 - Next lecture: build sequential circuit (memory) devices
 - The one after: glue these devices into a computer

Digital Systems

- ... however, the application of digital logic extends way beyond just computers.
- Today, digital systems are replacing all kinds of analog systems in life (data processing, control systems, communications, measurement, ...)
- What is a digital system?
 - Digital: quantities or signals only assume discrete values
 - Analog: quantities or signals can vary continuously
- Why digital systems?
 - Greater accuracy and reliability
• The heart of a digital system is usually a digital logic circuit

Outline

• Introduction
• **Logic gates**
 • Boolean algebra
 • Implementing gates with switching devices
• Common combinational devices
• Conclusions
An AND-Gate

- A smallest useful circuit is a logic gate
- We will connect these small gates into larger circuits

An OR-Gate and a NOT-Gate
Building Circuits Using Gates

- Can implement any circuit using only AND, OR, and NOT gates
- But things get complicated when we have lots of inputs and outputs...

Problems

- Many different ways of implementing a circuit (the two above circuits turn out to be the same!)
- How do we find the best implementation? Need better formalism
- Also need more compact representation
- This leads to the study of boolean algebra
Outline

- Introduction
- Logic gates
- **Boolean algebra**
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Boolean Algebra

- **History**
 - Developed in 1847 by Boole to solve mathematic logic problems
 - Shannon first applied it to digital logic circuits in 1939
- **Basics**
 - **Boolean variables**: variables whose values can be 0 or 1
 - **Boolean functions**: functions whose inputs and outputs are boolean variables
- **Relationship with logic circuits**
 - Boolean variables correspond to signals
 - Boolean functions correspond to circuits
Defining a Boolean Function with a Truth Table

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AND (x, y)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

• A systematic way of specifying a function value for all possible combination of input values
• A function that takes 2 inputs has 2×2 columns
• A function that takes n inputs has 2^n columns
• This particular example is the AND-function

OR and NOT Truth Tables

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OR (x, y)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT (x)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Defining a General Boolean Function Using Three Basic Boolean Functions

- The three basic functions have short-hand notations
- Can compose the three basic boolean functions to form arbitrary boolean functions [such as \(g(x, y) = xy + z' \)]

Two Ways of Defining a Boolean Function

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XOR ((x, y) = x \oplus y)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\text{XOR} (x, y) = x \oplus y = x'y + xy'
\]

- We have learned that any function can be defined in these two ways: truth table and composition of basic functions
- Why do we need all these different representations?
 - Some are easier than others to begin with to design a circuit
 - Usually start with truth table (or variants of it)
 - Derive a boolean expression from it (perhaps including simplification)
 - Straightforward transformation from boolean expression to circuit
More Examples of Boolean Functions

Gluing the truth tables of all functions of two variables into one table

For n variables, there are a total of \(2^n\) functions!

So How to Translate a Truth Table to a Boolean Expression (Sum-of-Products)?

- form AND terms for each \(1\) in the function
- use \(v\) if it corresponds to \(v = 1\)
- use \(v'\) (NOT \(v\)) if it corresponds to \(v = 0\)
- OR the terms together

Ex: majority function

\[
x: 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \\
y: 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \\
z: 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\
m: 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1
\]

\[m = x'y'z + xy'z' + x'yz + xyz\]
Another Example

Example: odd parity function

\[
x: 0 0 0 0 1 1 1 1 \\
y: 0 0 1 1 0 0 1 1 \\
z: 0 1 0 1 0 1 0 1 \\
p: 0 1 1 0 1 0 0 1
\]

\[p = x'y'z + x'yz' + xy'z + xyz\]

Parity Function Construction Demo

\[
x: 0 0 0 0 1 1 1 1 \\
y: 0 0 1 1 0 0 1 1 \\
z: 0 1 0 1 0 1 0 1 \\
p: 0 1 1 0 1 0 0 1
\]

\[x'y'z \quad x'y'z' \quad xy'z' + x'yz\]
Transform a Boolean Expression into a Boolean Circuit

Use sum-of-products form of function
Example: majority
\[m = x'y'z + xy'z + xyz' + xyz \]

Simplification Using Boolean Algebra

• Large body of boolean algebra laws can be employed to simplify circuits
• The previous example:
 \[xy + xy' = x(y+y') = x*1 = x \]
• Much more, but you don’t have to know any of this...
Mini-Summary: How Do We Make a Combinational Circuit

- Represent input signals with input boolean variables, represent output signals with output boolean variables
- Construct truth table based on what we want the circuit to do
- Derive (simplified) boolean expression from the truth table
- Transform boolean expression into a circuit by replacing basic boolean functions with primitive gates

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions
Any two-state device can be a switching device, examples are relays, diodes, transistors, and magnetic cores.

A transistor example

Any boolean function can be implemented by wiring together transistors.

Make a NOT-gate Using a Transistor

\[O = MC' = 1 \times x' = x' \]
Make an OR-gate Using Transistors

\[(x' y')' = x + y\]
(DeMorgan’s Law)

Make an AND-gate Using Transistors

\[y'' = y\]
\[y (x''') = xy\]
Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- **Common combinational devices**
- Conclusions

Decoder Interface

Example:
If \(x, y, z = 1, 0, 1 \)
\(d_0 = 1 \)
\(d_1 = 0 \) elsewhere

\[
\begin{align*}
 d_0 &= x'y'z' \\
 d_1 &= x'y'z \\
 d_2 &= x'yz' \\
 d_3 &= x'yz \\
 d_4 &= xy'z' \\
 d_5 &= xy'z \\
 d_6 &= xyz' \\
 d_7 &= xyz
\end{align*}
\]

3-8 decoder

\(x \rightarrow y \rightarrow z \rightarrow d_0, d_1, d_2, d_3, d_4, d_5, d_6, d_7 \)

\(N \) "inputs"
\(2^N \) "outputs"

- Turns on precisely one "output"
- Address is encoded in "inputs"
Deriving Decoder Boolean Expressions

\[
\begin{array}{c|cccccccc}
\hline
x & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline
y & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline
z & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
d_0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[d_0 = x'y'z'\]

\[
\begin{array}{c|cccccccc}
\hline
x & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline
y & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline
z & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
d_1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[d_1 = x'y'z\]

\[\ldots \ldots\]

- Can bypass truth table when you’re comfortable with this

Decoder Implementation

![Diagram of decoder implementation]
Decoder Demo

Multiplexer Interface

- I_0-I_7 are the “data inputs”, x,y,z form the “control” inputs and are interpreted together as one binary number
- One data input is selected by the control and becomes output
- For example, if x,y,z are 1,0,1, then $M=I_5$
Multiplexer Boolean Expression

\[
\begin{array}{c|cccccccc}
 x & 0 & 0 & 0 & 0 & \ldots & 1 & 1 \\
 y & 0 & 0 & 0 & 0 & \ldots & 1 & 1 \\
 z & 0 & 0 & 1 & 1 & \ldots & 1 & 1 \\
 I_7 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 \\
 \ldots & \ldots \\
 I_1 & 0 & 0 & 0 & 1 & \ldots & 0 & 0 \\
 I_0 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
 M & 0 & 1 & 0 & 1 & \ldots & 0 & 1 \\
\end{array}
\]

\[
M = x'y'z'I_0 + x'y'zI_1 + \ldots + xyzI_7
\]

- A lot easier in this case to directly derive the boolean expression instead of starting with a truth table

Multiplexer Implementation

\[
\begin{align*}
M &= x'y'z'I_0 + x'y'zI_1 + x'yz'I_2 + x'yzI_3 \\
&\quad + xy'z'I_4 + xy'zI_5 + xyz'I_6 + xyzI_7
\end{align*}
\]
An Adder Bit-Slice Interface

- Add three 1-bit numbers x, y, z
- s is the 1-bit sum
- c is the 1-bit carry

An Adder Bit-Slice Implementation

- Sum: odd parity circuit
- Carry: majority circuit

- See slides 11-16, 11-17, and 11-18 for details of the odd parity circuit and majority circuit
Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions
Abstractions and Encapsulation

All the lessons that we learned for ADT apply here to hardware as well!

Building a Computer Bottom Up

• **Circuit design**: specifying the interconnection of components such as resistors, diodes, and transistors to form logic building blocks

• **Logic design**: determining how to interconnect logic building blocks such as logic gates and flip-flops to form subsystems

• **System design** (or computer architecture): specifying the number, type, and interconnection of subsystems such as memory units, ALUs, and I/O devices
What We Have Learned

• How to build basic gates using transistors
• How to build a combinational circuit
 - Truth table
 - Sum-of-product boolean expression
 - Transform a boolean expression into a circuit of basic gates
• The functionality of some common devices and how they are made
 - Decoder
 - Multiplexer
 - Bit-slice adder
• You’re not responsible for
 - Boolean algebra laws, or circuit simplification