Lecture 8: Applications of solving CNF
Outline

• Brief review on search techniques
 – Blind search, heuristic search, and game search

• Brief review on logical inference
 – Propositional logic, model checking, and theorem proving

• Applications of solving CNF
 – Many problems can be reduced to SAT problems
5 components of search problems

- Initial state
- Actions
- Transitional model
- Goal test
- Path cost
Blind search

- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- Depth-Limited Search (DLS)
 - The depth of the root node is 0.
- Iterative-Deepening Search (IDS)
 - Start at $l = 0$.
- Bidirectional Search
Heuristic Search

• Admissible and consistent heuristics

• Greedy-First Search
 – \(f(n) = h(n) \)

• A* Search
 – \(f(n) = g(n) + h(n) \)
 – A* graph search is optimal when using consistent heuristics
 – A* tree search is optimal when using admissible heuristics
Search in Games

• Games
 – 2 player
 – Zero-sum

• The Minimax algorithm
 – Complete and optimal

• Alpha-beta pruning
 – Significantly reduce the number of nodes searched while maintaining the optimality of the Minimax algorithm.
Logical inference

• Problem: Can we infer a new fact given a set of known facts (KB |= α ?)

• Propositional logic
 – Propositional symbols, Syntax and semantics

• Model checking
 – DPLL
 – WALKSAT

• Theorem proving
 – Resolution algorithm (is KB ∧ ¬α unsatisfiable?)
 – Forward/backward chaining (KB: Horn clauses, α : single positive symbol)
DPLL and WALKSAT

• **DPLL**

 • Complete and sound

 • Determine KB |= α

 • Check satisfiability of a cnf + find a model if it is satisfiable

• **WALKSAT**

 • Sound, but not complete

 • Mostly used for finding a model when a cnf is satisfiable
Applications of solving CNF

• SAT is used in problems other than logical inference
 – N-queen problem
 – 3-coloring graph
 – Hamiltonian path
 – Planning
Reduce 3-coloring graph to SAT

- Define Symbols:
 - \(P_{ij} \): node \(i \) is colored in color \(j \)
 - \(i = 1, 2, 3 \) or 4
 - \(j = r, g \) or \(b \)

- Express facts/rules in clauses
 1. Each node gets one color
 2. Two nodes sharing a common edge can’t be colored the same

Diagram:

- Nodes: 1, 2, 3, 4
- Edges: 1-2, 1-3, 2-3, 4-1, 4-2, 4-3
Reduce 3-coloring graph to SAT

1. Each node gets one color

 (1) Each node gets at least one color

 \[P_{1r} \lor P_{1g} \lor P_{1b} \]
 \[P_{2r} \lor P_{2g} \lor P_{2b} \]
 \[P_{3r} \lor P_{3g} \lor P_{3b} \]
 \[P_{4r} \lor P_{4g} \lor P_{4b} \]

 (2) Each node gets only one color

 \[(\neg P_{1r} \lor \neg P_{1g}) \land (\neg P_{1r} \lor \neg P_{1b}) \land (\neg P_{1g} \lor \neg P_{1b}) \]
 \[(\neg P_{2r} \lor \neg P_{2g}) \land (\neg P_{2r} \lor \neg P_{2b}) \land (\neg P_{2g} \lor \neg P_{2b}) \]
 \[(\neg P_{3r} \lor \neg P_{3g}) \land (\neg P_{3r} \lor \neg P_{3b}) \land (\neg P_{3g} \lor \neg P_{3b}) \]
 \[(\neg P_{4r} \lor \neg P_{4g}) \land (\neg P_{4r} \lor \neg P_{4b}) \land (\neg P_{4g} \lor \neg P_{4b}) \]
2. Two nodes sharing a common edge can’t be colored the same

• For edge 1-4
 \[(\neg P_{1r} \lor \neg P_{4r}) \land (\neg P_{1g} \lor \neg P_{4g}) \land (\neg P_{1b} \lor \neg P_{4b})\]

• For edge 2-4
 \[- (\neg P_{2r} \lor \neg P_{4r}) \land (\neg P_{2g} \lor \neg P_{4g}) \land (\neg P_{2b} \lor \neg P_{4b})\]

• For edge 1-2
 \[- (\neg P_{1r} \lor \neg P_{2r}) \land (\neg P_{1g} \lor \neg P_{2g}) \land (\neg P_{1b} \lor \neg P_{2b})\]

• For edge 2-3
 \[- (\neg P_{2r} \lor \neg P_{3r}) \land (\neg P_{2g} \lor \neg P_{3g}) \land (\neg P_{2b} \lor \neg P_{3b})\]

--- Put all clauses in a cnf and pass to a sat-solver.

--- A model for the constructed cnf is a solution to the original problem.

--- Legal coloring is guaranteed by the rules in 1 and 2.
Announcement & Reminder

• P1 is due today

--- due by midnight, upload your files to CS dropbox.

--- remember to press the “check all submitted files” button. No credit will be given the code that does not compile.

• P2 has been released and is due on Tuesday Oct. 27th

--- due by midnight, upload your files to CS dropbox.