Lecture 6: Theorem Proving & Resolution Algorithm
• Logical equivalence, validity and satisfiability

• Inference rules

• Resolution rule

• Conjunction Normal Form (CNF)

• Resolution algorithm

• Construct a model for satisfiable clauses (all clauses in KB when resolution algorithm stops.)
Some points

• A clause is a disjunction of literals.

• A CNF is a conjunction of clauses.

• Resolution algorithm is both complete and sound.

• Theorem proving does not need to consult models.

• Every sentence can be written in CNF.

• \(KB \models \alpha \) if and only if \((KB \rightarrow \alpha)\) is valid. (Deduction Theorem)

• \(KB \models \alpha \) if and only if \(KB \land \neg \alpha \) is unsatisfiable.
Inference rules

- Modus Ponens
- And elimination
- Reverse And elimination
- All logical equivalence rules
Construct a model

• Consider the set of all clauses (KB, \(\sim \alpha \) and all derived clauses)

• For \(k=1,2,...,n \)

 – If \(P_k \) is “forced” to be true or false, set \(P_k \) accordingly.

 – Else set \(P_k \) arbitrarily
Construct a model (example)

• KB: \((P_1 \lor P_2) \land (\neg P_1 \lor \neg P_3) \land (\neg P_3 \lor P_4)\)

• \(\alpha: P_1\)

• The set of all sentences: \((KB, \neg \alpha, \text{derived clauses (5) and (6)})\)

 - (1) \((P_1 \lor P_2)\)

 - (2) \((\neg P_1 \lor \neg P_3)\)

 - (3) \((\neg P_3 \lor P_4)\)

 - Add \(\neg \alpha, (4)\) \(\ P_1\)

 - Resolve (1) and (4) to derive (5) \(P_2\)

 - Resolve (1) and (2) to derive (6) \((P_2 \lor \neg P_3)\)

• Follow the algorithm on previous slide, can find a model \((P_1=\text{F}, P_2=\text{T}, P_3=\text{T}, P_4=\text{F})\). Note: \(P_3\) is set to \(\text{T}\) arbitrarily, all others are “forced”.
Proof for constructing a model (Will not get stuck when setting P_1, P_2, \ldots, P_n)

- Proof idea: (by contradiction)

 - Assume first get stuck when setting P_k

 - Then will have P_k and $\neg P_k$ after setting $P_1, P_2, \ldots, P_{k-1}$

 - Must come from original form $\alpha \lor P_k$ and $\beta \lor \neg P_k$, respectively. α and β are clauses over $P_1, P_2, \ldots, P_{k-1}$, $\alpha=F$ and $\beta=F$ after setting $P_1, P_2, \ldots, P_{k-1}$. So $\alpha \lor \beta$ is False.

 - However, $\alpha \lor \beta$ is in the set of all clauses. (we can derive $\alpha \lor \beta$ by resolving $(\alpha \lor P_k)$ and $(\beta \lor \neg P_k)$, so $\alpha \lor \beta$ should be True after setting $P_1, P_2, \ldots, P_{k-1}$.

 - Contradiction.
1. Theorem proving is a technique which applies inference rules on known facts in order to derive new facts.

2. Modus Ponens is one of the inference rules that are used in resolution algorithm.

3. Resolution algorithm can be used to determine whether a sentence is satisfiable.

4. Resolution algorithm is used to determine whether KB \(\models \alpha \).
Review questions: true or false (con’d)

5. Finding proofs can be converted into a search problem.

6. By using resolution rule on \((\neg A \lor B)\) and \((A \lor \neg B)\), an empty clause is derived.

7. All sentences can be written in CNF.

8. The first step of resolution algorithm is to convert \(KB \land \alpha\) into CNF.
Announcement & Reminder

• P1 (first programming assignment) has already been released. It is due on Tuesday Oct. 13th.
 --- due by midnight, upload your files to CS dropbox

• W2 is released today and is due on Tuesday Oct. 20th
 --- Due in class, hard copies.