Administration

• We’ll announce on Piazza when you can start an assignment
 – don’t start early as there may be changes!
 – sign up for Piazza!
 – Assignment 1 due at 11:59 tonight!

• Program style guide:

• Read notes:
 – functional basics, type-checking, typed programming
 – thinking recursively (today)
 – Real World OCaml Chapter 2, 3
Typed Functional Programming

• Functional programs operate by:
 – extracting information from their arguments and then
 – producing new values

• So far, we've defined nonrecursive functions in this style to analyze pairs and optional values

• Why? Because recursive functions typically operate on recursive data
 – Pairs are not recursive -- we need only do a small, (statically) predictable amount of work to get at the information these structures contain
 – Lists and natural numbers can be viewed as recursive
 • not surprisingly, you’ve defined recursive functions over numbers!
An *inductive data type* \(T \) is a data type defined by:

- a collection of base cases
 - that don’t refer to \(T \)
- a collection of inductive cases that build new values of type \(T \) from pre-existing data of type \(T \)

Programming principle:

- solve programming problem for base cases
- solve programming problem for inductive cases by calling function recursively (inductively) on *smaller* data value

Proving principle:

- prove program satisfies property \(P \) for base cases
- prove inductive case satisfies property \(P \) assuming inductive call on *smaller* data value satisfies property \(P \)
LISTS: AN INDUCTIVE DATA TYPE
Lists are Recursive Data

• In O'Caml, a list value is:
 – [] (the empty list)
 – v :: vs (a value v followed by a shorter list of values vs)
Lists are Inductive Data

• In O'Caml, a list value is:
 – [] (the empty list)
 – v :: vs (a value v followed by a shorter list of values vs)

• An example:
 – 2 :: 3 :: 5 :: [] has type int list
 – is the same as: 2 :: (3 :: (5 :: []))
 – "::" is called "cons"

• An alternative syntax ("syntactic sugar" for lists):
 – [2; 3; 5]
 – But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get confused fall back on the 2 basic constructors: :: and []
Typing Lists

• Typing rules for lists:

 (1) [] may have any list type \(t \text{ list} \)

 \[[] : T \text{ list} \]

 (2) if \(e_1 : t \) and \(e_2 : t \text{ list} \)
 then \(e_1 :: e_2 : t \text{ list} \)

 \[
 \begin{align*}
 e_1 : T & \quad e_2 : T \text{ list} \\
 e_1 :: e_2 & : T \text{ list}
 \end{align*}
 \]
Typing Lists

• Typing rules for lists:

 (1) \([\]\) may have any list type \(t\) list

 \[
 (1) \quad [\] : T\ list
 \]

 (2) if \(e_1 : t\) and \(e_2 : t\ List\)
 then \(e_1 :: e_2 : t\ list\)

 \[
 (2) \quad \text{if } e_1 : T \text{ and } e_2 : T\ list \text{ then } e_1 :: e_2 : T\ list
 \]

• More examples:

 (1 + 2) :: (3 + 4) :: [] : ??

 \[
 (1) \quad (1 + 2) :: (3 + 4) :: [] : ??
 \]

 (2 :: []) :: (5 :: 6 :: []) :: [] : ??

 \[
 (2 :: []) :: (5 :: 6 :: []) :: [] : ??
 \]

Typing Lists

• Typing rules for lists:

 (1) \([\]\) may have any list type \(t \text{ list}\)

 (2) if \(e_1 : t\) and \(e_2 : t \text{ list}\)
 then \(e_1 :: e_2 : t \text{ list}\)

• More examples:

 (1) \((1 + 2) :: (3 + 4) :: [\]\) : \text{int list}

 (2) \((2 :: [\]) :: (5 :: 6 :: [\]) :: [\]\) : \text{int list list}

 \([[2]; [5; 6]]\) : \text{int list list}

 (Remember that the 3rd example is an abbreviation for the 2nd)
• What type does this have?

Another Example

• What type does this have?

```haskell
# [2] :: [3];;
Error: This expression has type int but an expression was expected of type int list
```

```
```

```
e1:T e2:T list
```

```
e1::e2 : T list
```
Another Example

- What type does this have?

\[
\begin{array}{c}
\text{int list} & \text{int list}
\end{array}
\]

- Give me a simple fix that makes the expression type check?

\[
e1:T \quad e2:T \text{ list} \\
e1::e2 : T \text{ list}
\]
Another Example

- What type does this have?

\[
\begin{array}{c}
\text{int list} & \text{int list}
\end{array}
\]

- Give me a simple fix that makes the expression type check?

Either: \[2 :: [3] : \text{int list}\]

Or: \[[2] :: [[3]] : \text{int list list}\]

_e1:T _e2:T \text{list}
_e1::e2 : T \text{list}
Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```ocaml
(* return Some v, if v is the first list element; return None, if the list is empty *)
let head (xs : int list) : int option =

;;
```
Analyzing Lists

- Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

\[
\begin{align*}
\text{let head (xs : int list) : int option =} \\
\text{match xs with} \\
\mid [\] & -> \\
\mid \text{hd :: _} & -> \\
\end{align*}
\]

(* return Some v, if v is the first list element; return None, if the list is empty *)

we don't care about the contents of the tail of the list so we use the underscore
Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(*) return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] -> None
 | hd :: _ -> Some hd

• This function isn't recursive -- we only extracted a small amount of information from the list -- the first element
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)
(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list = ;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] ->
| (x,y) :: tl ->
;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl ->
;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> ?? :: ??
;;

the result type is int list, so we can speculate that we should create a list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??
;;

the first element is the product
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??
;;

to complete the job, we must compute the products for the rest of the list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: prods tl
;;
Two Parts to Constructing a Function

Think about how to break down the input into cases:

\[
\text{let rec prods (xs : (int*int) list) : int list =}
\]

\[
\begin{align*}
| [] & \rightarrow \ldots \\
| (x,y) :: tl & \rightarrow \ldots \text{ prods tl} \\
\end{align*}
\]

This assumption is called the Induction Hypothesis. You’ll use it to prove your program correct.

Assume the recursive call is correct (i.e.: its result satisfies the property you want).

Use its result to build correct answer.

\[
\begin{align*}
\text{let rec prods (xs : (int*int) list) : int list =} \\
\quad \ldots \\
| (x,y) :: tl & \rightarrow \ldots \text{ prods tl} \ldots
\end{align*}
\]
Recap

Broad steps:
- *break down the input* based on its type into a set of cases
 - there can be more than one way to do this
- *make the assumption* (the *induction hypothesis*) that your recursive function works correctly when called on a *smaller list*
 - you might have to make 0, 1, 2 or more recursive calls
- *build the output* (guided by its type) from the results of recursive calls

```
let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] -> []
  | (x,y) :: tl -> (x * y) :: prods tl
```

Another example: zip

(* Given two lists of integers, return None if the lists are different lengths otherwise stitch the lists together to create Some of a list of pairs

 zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
 zip [5; 3] [4] == None
 zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)

(Give it a try.)
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with

;;
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) ->
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

;;
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], [], []) -> Some []
| ([], y::ys') ->
| (x::xs', []) ->
| (x::xs', y::ys') ->

;;
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->

;;
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

;;

is this ok?
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xs', []) -> None
    | (x::xs', y::ys') -> (x, y) :: zip xs' ys'
```

No! zip returns a list option, not a list! We need to match it and decide if it is Some or None.
Another example: zip

```
let rec zip (xs : int list) (ys : int list) : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xs', []) -> None
    | (x::xs', y::ys') ->
        (match zip xs' ys' with
         None -> None
         | Some zs -> (x,y) :: zs
        )
;;
```

Is this ok?
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs)
);;
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) :
  (int * int) list option =

  match (xs, ys) with
  | ([], []) -> Some []
  | (x::xs', y::ys') ->
    (match zip xs' ys' with
     None -> None
     | Some zs -> Some ((x,y) :: zs))
  | (_, _) -> None
;;
```

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.
let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl
;;
A bad list example

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl
;;

Characters 39-78:
..match xs with
 hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>
INSERTION SORT
Recall Insertion Sort

- At any point during the insertion sort:
 - some initial segment of the array will be sorted
 - the rest of the array will be in the same (unsorted) order as it was originally

-5 -2 3 -4 10 6 7

sorted unsorted
Recall Insertion Sort

• At any point during the insertion sort:
 – some initial segment of the array will be sorted
 – the rest of the array will be in the same (unsorted) order as it was originally

-5 -2 3 -4 10 6 7

-5 -4 -2 3 10 6 7

• At each step, take the next item in the array and insert it in order into the sorted portion of the list
Insertion Sort With Lists

• The algorithm is similar, except instead of one array, we will maintain two lists, a sorted list and an unsorted list.

- list 1:
 -5 -2 3
 sorted
- list 2:
 -4 10 6 7
 unsorted

• We'll factor the algorithm:
 – a function to insert into a sorted list
 – a sorting function that repeatedly inserts
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list = ;;
let rec insert (x : int) (xs : int list) : int list =
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] ->
 | hd :: tl ->

;;

a familiar pattern:
analyze the list by cases
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
(*) insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
 if hd < x then
 hd :: insert x tl
 hd :: insert x tl

build a new list with:
• hd at the beginning
• the result of inserting x in to the tail of the list afterwards
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl ->
 if hd < x then
 hd :: insert x tl
 else
 x :: xs
;;

put x on the front of the list, the rest of the list follows
Insertion Sort

```ocaml
let rec insert_sort(xs : il) : il = ;;
```

```ocaml
type il = int list
insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il = ;;
```
Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in
 aux [] xs

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =
 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] ->
 | hd :: tl ->
 in
 aux [] xs
 ;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> aux (insert hd sorted) tl
 in
 aux [] xs

;;
A COUPLE MORE THOUGHTS ON LISTS
The (Single) List Programming Paradigm

• Recall that a list is either:
 – [] (the empty list)
 – v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

```ml
let l0 = [];; (* length is 0 *)
let l1 = 1::l0;; (* length is 1 *)
let l2 = 2::l1;; (* length is 2 *)
let l3 = 3::l2;; (* length is 3 *)
...
```
Consider the following picture. How long is the linked structure? Can we build a value with type `int list` to represent it?
Consider This Picture

• How long is it? **Infinitely long?**
• Can we build a value with type `int list` to represent it? **No!**
 – all values with type `int list` have finite length
• Is it a good thing that the type list does not contain any infinitely long lists? Yes!

• A terminating list-processing scheme:

```ocaml
define f (xs : int list) : int =
  match xs with
  [ ] -> … do something not recursive …
  | hd::tail -> … f tail …
;;
```

terminates because f only called recursively on smaller lists
A Loopy Program

let rec loop (xs : int list) : int =
 match xs with
 | [] -> 0
 | hd::tail -> hd + loop (0::tail)
;;

Does this program terminate?
A Loopy Program

Does this program terminate? No! Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.

```ocaml
let loop (xs : int list) : int =
  match xs with
  [|] -> []
  | hd::tail -> hd + loop (0::tail)
;;
```
ML has a \textit{strong type system}

- ML \textit{types say a lot} about the set of values that inhabit them

In this case, the tail of the list is \textit{always} shorter than the whole list

This makes it easy to write functions that terminate; \textit{it would be harder if you had to consider more cases}, such as the case that the tail of a list might loop back on itself. \textit{Moreover OCaml hits you over the head to tell you what the only 2 cases are!}

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. (We'll do that later in the course.)
Rant #2: Imperative lists

- One week from today, ask yourself: Which is easier:
 - Programming with immutable lists in ML?
 - Programming with pointers and mutable cells in C/Java

SCORE: OCAML 2, JAVA 0
I want to build a perfect HO-scale (1/87) model train layout of my town.

Why not?

Because it'd include a little 1" replica of your house.

So? That'd be cool. I'd make tiny replicas of my rooms, my furniture—

—and your train layout?

The Matryoshka limit. It is impossible to nest more than six HO layouts.

My god.

Yeah, it's the second rule of model train layouts: no nesting.

...What's the first rule?

"Do not talk about model train layouts." That rule was actually voted in by our friends and families. Philistines.
Example problems to practice

• Write a function to sum the elements of a list
 – sum [1; 2; 3] ==> 6

• Write a function to append two lists
 – append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]

• Write a function to reverse a list
 – rev [1;2;3] ==> [3;2;1]

• Write a function to turn a list of pairs into a pair of lists
 – split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])

• Write a function that returns all prefixes of a list
 – prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]

• suffixes...

Is that a tree or a DAG? Does it matter?
ANOTHER INDUCTIVE DATA TYPE: THE NATURAL NUMBERS
Natural Numbers

• Natural numbers are a lot like lists
 – both can be defined inductively

• A natural number \(n \) is either
 – 0, or
 – \(m + 1 \) where \(m \) is a smaller natural number

• Functions over naturals \(n \) must consider both cases
 – programming the base case 0 is usually easy
 – programming the inductive case \((m+1) \) will often involve recursive calls over smaller numbers

• OCaml doesn't have a built-in type "nat" so we will use "int" instead for now ...
 – “int” has too many values in it (and also not enough)
 – later in the course we could define an \emph{abstract type} that contains exactly the natural numbers
An Example

(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =

;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number
 return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 ->
 | _ ->
 ;;

By definition of naturals:
 • n = 0 or
 • n = m+1 for some nat m
An Example

(* precondition: n is a natural number return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 -> 0
 | _ ->
 ;;

solve easy base case first
consider:
what number is double 0?

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 -> 0
 | _ -> ????
 ;;

assume double_nat m is correct where n = m+1
that’s the inductive hypothesis

By definition of naturals:
• \(n = 0 \) or
• \(n = m+1 \) for some nat \(m \)
An Example

(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =
 match n with
 | 0 -> 0
 | _ -> 2 + double_nat (n-1)
;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

assume double_nat m is correct
where n = m+1

that's the inductive hypothesis

I wish I had a pattern (m+1) ... but OCaml doesn’t have it. So I use n-1 to get m.
let double (n : int) : int =

let rec double_nat (n : int) : int =
 match n with
 0 -> 0
 | n -> 2 + double_nat (n-1)
in

if n < 0 then
 failwith "negative input!"
else
double_nat n
;;
More than one way to decompose naturals

A natural n is either:
- 0,
- \(m+1 \), where m is a natural

unary decomposition

A natural n is either:
- 0,
- 1,
- \(m+2 \), where m is a natural

unary even/odd decomposition

A natural n is either:
- 0,
- \(m*2 \)
- \(m*2+1 \)

binary decomposition
(there’s a little problem here with a redundant representation; what is it?)
More than one way to decompose lists

A list \(xs\) is either:
- \([\,]\),
- \(x::xs\), where \(ys\) is a list

\[\text{unary decomposition}\]

A list \(xs\) is either:
- \([\,]\),
- \([x]\),
- \(x::y::ys\), where \(ys\) is a list

\[\text{unary even/odd decomposition}\]

A list \(xs\) is either:
- \([\,]\),
- \(a@b\)
- \(x :: (a@b)\)

\[\text{where } a \text{ and } b \text{ are lists of the same length; recall that } @ \text{ is list-concat}\]
Summary

• Instead of while or for loops, functional programmers use recursive functions

• These functions operate by:
 – decomposing the input data
 – considering all cases
 – some cases are base cases, which do not require recursive calls
 – some cases are inductive cases, which require recursive calls on smaller arguments

• We've seen:
 – lists with cases:
 • (1) empty list, (2) a list with one or more elements
 – natural numbers with cases:
 • (1) zero (2) m+1
 – we'll see many more examples throughout the course