Did I get it right?

COS 326
David Walker
Princeton University

http://.../cos326/notes/evaluation.php
http://.../cos326/notes/reasoning.php
“Did I get it right?”

– Most fundamental question you can ask about a computer program

Techniques for answering:

Grading
- hand in program to TA
- check to see if you got an A
- (does not apply after school is out)

Testing
- create a set of sample inputs
- run the program on each input
- check the results
- how far does this get you?
 - has anyone ever tested a homework and not received an A?
 - why did that happen?

Proving
- consider all legal inputs
- show every input yields correct result
- how far does this get you?
 - has anyone ever proven a homework correct and not received an A?
 - why did that happen?
Program proving

• The basic, overall *mechanics* of proving functional programs correct is not particularly hard.
 – You are already doing it to some degree.
 – The real goal of this lecture to help you further organize your thoughts and to give you a more systematic means of understanding your programs.
 – Of course, it can certainly be hard to prove some specific program has some specific property -- just like it can be hard to write a program that solves some hard problem

• We are going to focus on proving the correctness of *pure expressions*
 – their meaning is determined exclusively by the value they return
 – don’t print, don’t mutate global variables, don’t raise exceptions
 – always terminate
 – another word for “pure expression” is “valuable expression”
“Expressions always terminate”

Two key concepts:

– A **valuable expression**
 * an expression that always terminates and produces a value

– A **total function** with type t1 -> t2
 * a function that terminates on all arguments with type t1, producing a value of type t2
 * the “opposite” of a total function is a **partial function**
 – terminates on some (possibly all) input values

Many reasoning rules depend on expressions being valuable and hence the functions that are applied being total.

Unless told otherwise, you can assume functions are total and expressions are valuable. (Such facts can typically be proven by induction.)
Example Theorems

We'll prove properties of OCaml expressions, starting with equivalence properties:

Theorem: easy 1 20 30 == 50

Theorem: for all natural numbers n, $\exp n == 2^n$

Theorem: for all lists xs, ys, $\text{length} (\text{cat} xs ys) == \text{length} xs + \text{length} ys$

```ocaml
let easy x y z = x * (y + z)

let rec exp n = match n with
  | 0 -> 1
  | n -> 2 * exp (n-1)

let rec length xs = match xs with
  | [] => 0
  | x::xs => 1 + length xs

let rec cat xs1 xs2 = match xs with
  | [] -> xs2
  | hd::tl -> hd :: cat tl xs2
```