Administration

• We’ll announce on Piazza when you can start an assignment
 – don’t start early as there may be changes!
 – sign up for Piazza!
 – Assignment 1 due at 11:59 tonight!

• Program style guide:

• Read notes:
 – functional basics, type-checking, typed programming
 – thinking recursively (today)
 – Real World OCaml Chapter 2, 3
Typed Functional Programming

- Functional programs operate by:
 - *extracting information* from their arguments and then
 - *producing new values*

- So far, we've defined *non-recursive* functions in this style to analyze pairs and optional values

- Why? Because *recursive functions typically come from recursive data*
 - Pairs are not recursive -- we need only do a small, (statically) predictable amount of work to get at the information these structures contain
 - Lists and natural numbers can be viewed as recursive
 - not surprisingly, you’ve defined recursive functions over numbers!
Inductive Programming and Proving

An *inductive data type* T is a datatype defined by:

- a collection of base cases
 - that don’t refer to T
- a collection of inductive cases that build new values of type T from pre-existing data of type T

Programming principle:

- solve programming problem for base cases
- solve programming problem for inductive cases by calling function recursively (inductively) on *smaller* data value

Proving principle:

- prove program satisfies property P for base cases
- prove inductive case satisfies property P assuming inductive call on *smaller* data value satisfies property $P
LISTS: AN INDUCTIVE DATA TYPE
Lists are Recursive Data

- In O'Caml, a list value is:
 - [] (the empty list)
 - v :: vs (a value v followed by a shorter list of values vs)
Lists are Inductive Data

• In O'Caml, a list value is:
 – [] (the empty list)
 – v :: vs (a value v followed by a shorter list of values vs)

• An example:
 – 2 :: 3 :: 5 :: [] has type int list
 – is the same as: 2 :: (3 :: (5 :: []))
 – "::" is called "cons"

• An alternative (better style) syntax:
 – [2; 3; 5]
 – But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get confused fall back on the 2 basic constructors: :: and []
Typing Lists

• Typing rules for lists:

(1) \([\]\) may have any list type \(t \text{ list}\)

(2) if \(e_1 : t\) and \(e_2 : t \text{ list}\) then \(e_1 :: e_2 : t \text{ list}\)
Typing Lists

• Typing rules for lists:

 (1) \[\] may have any list type \texttt{t list} \\

 (2) \texttt{if e1 : t and e2 : t list} \\
 \texttt{then e1 :: e2 : t list} \\

• More examples:

 (1 + 2) :: (3 + 4) :: \[\] \texttt{: ??} \\

 (2 :: \[]) :: (5 :: 6 :: \[]) :: \[\] \texttt{: ??} \\

 \[[2]; [5; 6]\] \texttt{: ??}
Typing Lists

• Typing rules for lists:

(1) [] may have any list type \(t \) list

(2) if \(e_1 : t \) and \(e_2 : t \) list
 then \(e_1 :: e_2 : t \) list

• More examples:

(1 + 2) :: (3 + 4) :: [] : int list

(2 :: []) :: (5 :: 6 :: []) :: [] : int list list

[[2]; [5; 6]] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)
Another Example

- What type does this have?

Another Example

- What type does this have?

```

int list  int list

rule: e1 :: e2 : t list  if  e1 : t  and  e2 : t list
```

```
# [2] :: [3];;
Error: This expression has type int but an expression was expected of type int list
#```
Another Example

• What type does this have?

\[
\]

int list

int list

• Give me a simple fix that makes the expression type check?
Another Example

• What type does this have?

\[
\]

int list

int list

• Give me a simple fix that makes the expression type check?

Either:

\[
2 :: [3]
\]

: int list

Or:

\[
[2] :: [[3]]
\]

: int list list
Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```ocaml
(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =

;;
```
Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```ocaml
(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] ->
 | hd :: _ ->
 ;;
```

we don't care about the contents of the tail of the list so we use the underscore
Analyzing Lists

• Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
    match xs with
    | [] -> None
    | hd :: _ -> Some hd
    ;;

• This function isn't recursive -- we only extracted a small, fixed amount of information from the list -- the first element
(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

    prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list = ;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] ->
  | (x,y) :: tl ->
  ;;
(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] -> []
  | (x,y) :: tl ->
    ;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]*)

let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] -> []
  | (x,y) :: tl -> ?? :: ??
  ;;

the result type is int list, so we can speculate that we should create a list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

\[ \text{prods } [(2,3); (4,7); (5,2)] = [6; 28; 10] \]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??
;;
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] -> []
  | (x,y) :: tl -> (x * y) :: ??
;;

to complete the job, we must compute
the products for the rest of the list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
  match xs with
  | [] -> []
  | (x,y) :: tl -> (x * y) :: prods tl
  ;;
Two Parts to Constructing a Function

Think about how to **break down** the input into cases:

```ocaml
let rec prods (xs : (int*int) list) : int list =
 match xs with
 | [] -> ...
 | (x,y) :: tl -> ... prods tl ...
```

**Assume** the recursive call is correct

(ie: its result satisfies the property you want).

Use its result to **build** correct answer.

```ocaml
let rec prods (xs : (int*int) list) : int list =
 ...
 | (x,y) :: tl -> ... prods tl ...
```
Recap

Broad steps:
- *break down the input* based on its type in to a set of cases
  - there can be more than one way to do this
- *make the assumption* (the *induction hypothesis*) that your recursive function works correctly when called on a *smaller list*
  - you might have to make 0, 1, 2 or more recursive calls
- *build the output* (guided by its type) from the results of recursive calls

```plaintext
let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: prods tl
;;
```
Another example: zip

(* Given two lists of integers, return None if the lists are different lengths otherwise stitch the lists together to create Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)

(Give it a try.)
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option = ;;
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with

;;
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

  match (xs, ys) with
  | ([], []) ->
  | ([], y::ys') ->
  | (x::xs', []) ->
  | (x::xs', y::ys') ->

;;
let rec zip (xs : int list) (ys : int list) :
    (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') ->
| (x::xs', []) ->
| (x::xs', y::ys') ->

;;
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

  match (xs, ys) with
  | ([], []) -> Some []
  | ([], y::ys') -> None
  | (x::xs', []) -> None
  | (x::xs', y::ys') ->;;
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'
```

is this ok?
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'
```

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

  match (xs, ys) with
  | ([], []) -> Some []
  | ([], y::ys') -> None
  | (x::xs', []) -> None
  | (x::xs', y::ys') ->
    (match zip xs' ys' with
    None -> None
    | Some zs -> (x,y) :: zs
  );;

Is this ok?
Another example: zip

```ocaml
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))
```
Another example: zip

```ml
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))
 | (_, _) -> None

;;
```

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.
let rec sum (xs : int list) : int =
  match xs with
  | hd::tl -> hd + sum tl
;;
A bad list example

```ocaml
let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl
;;
```

# Characters 39-78:
  ..match xs with
    hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>
INSERTION SORT
Recall Insertion Sort

- At any point during the insertion sort:
  - some initial segment of the array will be sorted
  - the rest of the array will be in the same (unsorted) order as it was originally

-5 -2 3 -4 10 6 7

sorted | unsorted
Recall Insertion Sort

• At any point during the insertion sort:
  – some initial segment of the array will be sorted
  – the rest of the array will be in the same (unsorted) order as it was originally

• At each step, take the next item in the array and insert it in order into the sorted portion of the list
Insertion Sort With Lists

• The algorithm is similar, except instead of \textit{one array}, we will maintain \textit{two lists}, a sorted list and an unsorted list.

\begin{itemize}
  \item We'll factor the algorithm:
    \begin{itemize}
      \item a function to insert in to a sorted list
      \item a sorting function that repeatedly inserts
    \end{itemize}
\end{itemize}

\begin{itemize}
  \item list 1:
    \begin{itemize}
      \item sorted
      \item \{-5, -2, 3\}
    \end{itemize}
  \item list 2:
    \begin{itemize}
      \item unsorted
      \item \{-4, 10, 6, 7\}
    \end{itemize}
\end{itemize}
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
  match xs with
  | [] ->
  | hd :: tl ->

;;

a familiar pattern: analyze the list by cases
(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl ->

;;
let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl ->
  if hd < x then
  hd :: insert x tl
  ;;

build a new list with:
• hd at the beginning
• the result of inserting x in to the tail of the list afterwards
(* insert x into sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] -> [x]
    | hd :: tl ->
        if hd < x then
            hd :: insert x tl
        else
            x :: xs
    ;;

put x on the front of the list, the rest of the list follows
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

    let rec aux (sorted : il) (unsorted : il) : il =

        in

    ;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

  let rec aux (sorted : il) (unsorted : il) : il =

  in
  aux [] xs

;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =
  let rec aux (sorted : il) (unsorted : il) : il =
    match unsorted with
    | [] ->
    | hd :: tl -> in
aux [] xs
;;
type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =
  let rec aux (sorted : il) (unsorted : il) : il =
    match unsorted with
    | [] -> sorted
    | hd :: tl -> aux (insert hd sorted) tl
  in
  aux [] xs

;;
A COUPLE MORE THOUGHTS ON LISTS
The (Single) List Programming Paradigm

• Recall that a list is either:
  – [ ] (the empty list)
  – v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

``` Ocaml
let l0 = [];; (* length is 0 *)
let l1 = 1::l0;; (* length is 1 *)
let l2 = 2::l1;; (* length is 2 *)
let l3 = 3::l2;; (* length is 3 *)
...
```
Consider the following picture. How long is the linked structure?
Can we build a value with type \texttt{int list} to represent it?
• How long is it? **Infinitely long?**
• Can we build a value with type `int list` to represent it? **No!**
  – all values with type `int list` have finite length
The List Type

• Is it a good thing that the type list does not contain any infinitely long lists? Yes!

• A terminating list-processing scheme:

```f
let f (xs : int list) : int =
 match xs with
 | [] -> ... do something not recursive ...
 | hd::tail -> ... f tail ...
```

terminates because f only called recursively on smaller lists
let loop (xs : int list) : int =
  match xs with
  [] -> []
  | hd::tail -> hd + loop (0::tail)
;;

Does this program terminate?
Does this program terminate? No! Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.
ML has a **strong type system**

- ML **types say a lot** about the set of values that inhabit them

In this case, the tail of the list is **always** shorter than the whole list

This makes it easy to write functions that terminate; **it would be harder if you had to consider more cases**, such as the case that the tail of a list might loop back on itself. **Moreover OCaml hits you over the head to tell you what the only 2 cases are!**

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. (We'll do that later in the course.)
Rant #2: Imperative lists

• One week from today, ask yourself: Which is easier:
  – Programming with immutable lists in ML?
  – Programming with pointers and mutable cells in C/Java

SCORE: OCAML 2, JAVA 0
I WANT TO BUILD A PERFECT HO-SCALE (1/87) MODEL TRAIN LAYOUT OF MY TOWN.

IN YOUR BASEMENT? BAD IDEA. NEVER MAKE A LAYOUT OF THE AREA YOU'RE IN.

WHY NOT?

BECAUSE IT'D INCLUDE A LITTLE 10" REPLICA OF YOUR HOUSE.

SO? THAT'D BE COOL. ID MAKE TINY REPLICA OF MY ROOMS, MY FURNITURE—AND YOUR TRAIN LAYOUT?

1/4

THE MATRYOSHKA LIMIT: IT IS IMPOSSIBLE TO NEST MORE THAN SIX HO LAYOUTS.

MY GOD.

YEAH, IT'S THE SECOND RULE OF MODEL TRAIN LAYOUTS: NO NESTING.

... WHAT'S THE FIRST RULE?

"DO NOT TALK ABOUT MODEL TRAIN LAYOUTS." THAT RULE WAS ACTUALLY VOTED IN BY OUR FRIENDS AND FAMILIES.

PHILISTINES.
Example problems to practice

• Write a function to sum the elements of a list
  – sum [1; 2; 3] ==> 6

• Write a function to append two lists
  – append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]

• Write a function to reverse a list
  – rev [1;2;3] ==> [3;2;1]

• Write a function to a list of pairs in to a pair of lists
  – split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])

• Write a function that returns all prefixes of a list
  – prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]
ANOTHER INDUCTIVE DATA TYPE:
THE NATURAL NUMBERS
Natural Numbers

• Natural numbers are a lot like lists
  – both can be defined inductively

• A natural number $n$ is either
  – 0, or
  – $m + 1$ where $m$ is a smaller natural number

• Functions over naturals $n$ must consider both cases
  – programming the base case 0 is usually easy
  – programming the inductive case ($m+1$) will often involve recursive calls over smaller numbers

• OCaml doesn't have a built-in type "nat" so we will use "int" instead for now ...
  – "int" has too many values in it (and also not enough)
  – later in the course we could define an abstract type that contains exactly the natural numbers
An Example

(* precondition: n is a natural number
return double the input *)

let rec double_nat (n : int) : int =

;;

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
(* precondition: n is a natural number return double the input *)

let rec double_nat (n : int) : int =
  match n with
  | 0 ->
  | _ -> ;;

By definition of naturals:
  - n = 0 or
  - n = m+1 for some nat m

two cases:
  one for 0
  one for m+1
An Example

(* precondition: n is a natural number return double the input *)

let rec double_nat (n : int) : int =
    match n with
    | 0 -> 0
    | _ -> ;;

solve easy base case first
consider:
what number is double 0?

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

/* precondition: n is a natural number return double the input */

let rec double_nat (n : int) : int =
  match n with
  | 0 -> 0
  | _ -> ????

;;

assume double_nat m is correct where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m
An Example

(* precondition: n is a natural number return double the input *)

let rec double_nat (n : int) : int =
    match n with
    | 0 -> 0
    | _ -> 2 + double_nat (n-1)
;;

assume double_nat m is correct where n = m+1

that’s the inductive hypothesis

By definition of naturals:
• n = 0 or
• n = m+1 for some nat m

I wish I had a pattern (m+1) ... but OCaml doesn’t have it. So I use n-1 to get m.
let double (n : int) : int =

let rec double_nat (n : int) : int =
    match n with
    0 -> 0
  | n -> 2 + double_nat (n-1)

in

if n < 0 then
    failwith "negative input!"
else
    double_nat n
;;

An Example

[* fail if the input is negative
   double the input if it is non-negative *]

nest double_nat so it can only be called by double

raises exception

protect precondition of double_nat by wrapping it with dynamic check

later we will see how to create a static guarantee using types
More than one way to decompose naturals

A natural $n$ is either:
- 0,
- $m+1$, where $m$ is a natural

A natural $n$ is either:
- 0,
- 1,
- $m+2$, where $m$ is a natural

A natural $n$ is either:
- 0,
- $m\times2$
- $m\times2+1$
More than one way to decompose lists

A list \( xs \) is either:
- \([\,]\),
- \( x::xs \), where \( ys \) is a list

Unary decomposition

A list \( xs \) is either:
- \([\,]\),
- \([x]\),
- \( x::y::ys \), where \( ys \) is a list

Unary even/odd decomposition

A natural \( n \) is either:
- \( 0 \),
- \( m*2 \)
- \( m*2+1 \)

Binary decomposition doesn't work out as smoothly for lists as lists have more information content: they contain structured elements.
Summary

• Instead of while or for loops, functional programmers use recursive functions

• These functions operate by:
  – decomposing the input data
  – considering all cases
  – some cases are *base cases*, which do not require recursive calls
  – some cases are *inductive cases*, which require recursive calls on *smaller* arguments

• We've seen:
  – lists with cases:
    • (1) empty list, (2) a list with one or more elements
  – natural numbers with cases:
    • (1) zero (2) m+1
  – we'll see many more examples throughout the course
END