GEOMETRIC APPLICATIONS OF BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
Overview

This lecture. Intersections among geometric objects.

Applications. CAD, games, movies, virtual reality, databases, GIS,

Efficient solutions. Binary search trees (and extensions).
GEOMETRIC APPLICATIONS OF BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
1d range search

Extension of ordered symbol table.
• Insert key-value pair.
• Search for key \(k \).
• Delete key \(k \).
• Range search: find all keys between \(k_1 \) and \(k_2 \).
• Range count: number of keys between \(k_1 \) and \(k_2 \).

Application. Database queries.

Geometric interpretation.
• Keys are point on a line.
• Find/count points in a given 1d interval.

<table>
<thead>
<tr>
<th>Insert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>insert B</td>
<td>B</td>
</tr>
<tr>
<td>insert D</td>
<td>B D</td>
</tr>
<tr>
<td>insert A</td>
<td>A B D</td>
</tr>
<tr>
<td>insert I</td>
<td>A B D I</td>
</tr>
<tr>
<td>insert H</td>
<td>A B D H I</td>
</tr>
<tr>
<td>insert F</td>
<td>A B D F H I</td>
</tr>
<tr>
<td>insert P</td>
<td>A B D F H I P</td>
</tr>
<tr>
<td>search G to K</td>
<td>H I</td>
</tr>
<tr>
<td>count G to K</td>
<td>2</td>
</tr>
</tbody>
</table>

• • • • • • • • • • • • • • • • • • • •
1d range search: elementary implementations

Unordered list. Slow insert, slow range search.

Ordered array. Slow insert, binary search for \(k_1 \) and \(k_2 \) to do range search.

Order of growth of running time for 1d range search

<table>
<thead>
<tr>
<th>data structure</th>
<th>insert</th>
<th>range count</th>
<th>range search</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>ordered array</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(R + \log N)</td>
</tr>
<tr>
<td>goal</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(R + \log N)</td>
</tr>
</tbody>
</table>

\(N = \) number of keys
\(R = \) number of keys that match
1d range count. How many keys between \(l_0 \) and \(h_i \) ?

Proposition. Running time proportional to \(\log N \).

Pf. Nodes examined = search path to \(l_0 \) + search path to \(h_i \).
1d range search: BST implementation

1d range search. Find all keys between `lo` and `hi`.
- Recursively find all keys in left subtree (if any could fall in range).
- Check key in current node.
- Recursively find all keys in right subtree (if any could fall in range).

Proposition. Running time proportional to $R + \log N$.

Pf. Nodes examined = search path to `lo` + search path to `hi` + matches.
Geometric Applications of BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
Orthogonal line segment intersection

Given N horizontal and vertical line segments, find all intersections.

Quadratic algorithm. Check all pairs of line segments for intersection.

Nondegeneracy assumption. All x- and y-coordinates are distinct.
Sweep vertical line from left to right.

- x-coordinates define events.
- h-segment (left endpoint): insert y-coordinate into BST.
Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates define events.
- h-segment (left endpoint): insert y-coordinate into BST.
- h-segment (right endpoint): remove y-coordinate from BST.
Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
- x-coordinates define events.
- h-segment (left endpoint): insert y-coordinate into BST.
- h-segment (right endpoint): remove y-coordinate from BST.
- v-segment: range search for interval of y-endpoints.

![Diagram of orthogonal line segment intersection using sweep-line algorithm](image)
Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time proportional to $N \log N + R$ to find all R intersections among N orthogonal line segments.

Pf.

- Put x-coordinates on a PQ (or sort). $\longrightarrow N \log N$
- Insert y-coordinates into BST. $\longrightarrow N \log N$
- Delete y-coordinates from BST. $\longrightarrow N \log N$
- Range searches in BST. $\longrightarrow N \log N + R$

Bottom line. Sweep line reduces 2d orthogonal line segment intersection search to 1d range search.
Geometric Applications of BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

- Insert a 2d key.
- Search for a 2d key.
- Delete a 2d key.
- **Range search**: find all keys that lie in a 2d range.
- **Range count**: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.

- Keys are point in the *plane*.
- Find/count points in a given *h–v rectangle*.
2d orthogonal range search: grid implementation

Grid implementation.

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only squares that intersect 2d range query.
2d orthogonal range search: grid implementation analysis

Space-time tradeoff.
- Space: $M^2 + N$.
- Time: $1 + N/M^2$ per square examined, on average.

Choose grid square size to tune performance.
- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: \sqrt{N}-by-\sqrt{N} grid.

Running time. [if points are evenly distributed]
- Initialize data structure: N.
- Insert point: 1.
- Range search: 1 per point in range.
Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
- Lists are too long, even though average length is short.
- Need data structure that adapts gracefully to data.
Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

13,000 points, 1000 grid squares

- half the squares are empty
- half the points are in 10% of the squares
Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

Quadtree. Recursively divide space into four quadrants.

2d tree. Recursively divide space into two halfplanes.

BSP tree. Recursively divide space into two regions.
Space-partitioning trees: applications

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.
- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.
2d tree construction

Recursively partition plane into two halfplanes.
2d tree implementation

Data structure. BST, but alternate using x- and y-coordinates as key.

- Search gives rectangle containing point.
- Insert further subdivides the plane.
Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).
Typical case. $R + \log N$.

Worst case (assuming tree is balanced). $R + \sqrt{N}$.
Goal. Find closest point to query point.
2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.
Nearest neighbor search in a 2d tree analysis

Typical case. \(\log N \).

Worst case (even if tree is balanced). \(N \).
Q. What "natural algorithm" do starlings, migrating geese, starlings, cranes, bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE
Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:
- Collision avoidance: point away from *k nearest* boids.
- Flock centering: point towards the center of mass of *k nearest* boids.
- Velocity matching: update velocity to the average of *k nearest* boids.
Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.
- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!
N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force: $F = \frac{G m_1 m_2}{r^2}$

Running time. Time per step is N^2.

http://www.youtube.com/watch?v=ua7YN4eL_w
Appel's algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate.
Appel's algorithm for N-body simulation

- Build 3d-tree with N particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

Impact. Running time per step is $N \log N \Rightarrow \text{enables new research.}$
Geometric Applications of BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
1d interval search

1d interval search. Data structure to hold set of (overlapping) intervals.

- Insert an interval \((lo, hi)\).
- Search for an interval \((lo, hi)\).
- Delete an interval \((lo, hi)\).
- **Interval intersection query:** given an interval \((lo, hi)\), find all intervals (or one interval) in data structure that intersects \((lo, hi)\).

Q. Which interval(s) intersect \((9, 16)\)?

A. \((7, 10)\) and \((15, 18)\).
1d interval search API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>public class IntervalST<Key extends Comparable<Key>, Value></code></td>
<td></td>
</tr>
<tr>
<td><code>IntervalST()</code></td>
<td>create interval search tree</td>
</tr>
<tr>
<td><code>void put(Key lo, Key hi, Value val)</code></td>
<td>put interval-value pair into ST</td>
</tr>
<tr>
<td><code>Value get(Key lo, Key hi)</code></td>
<td>value paired with given interval</td>
</tr>
<tr>
<td><code>void delete(Key lo, Key hi)</code></td>
<td>delete the given interval</td>
</tr>
<tr>
<td><code>Iterable<Value> intersects(Key lo, Key hi)</code></td>
<td>all intervals that intersect (lo, hi)</td>
</tr>
</tbody>
</table>

Nondegeneracy assumption. No two intervals have the same left endpoint.
Interval search trees

Create BST, where each node stores an interval \((lo, hi)\).

- Use left endpoint as BST **key**.
- Store **max endpoint** in subtree rooted at node.
Interval search tree demo: insertion

To insert an interval \((lo, hi)\):

- Insert into BST, using \(lo\) as the key.
- Update max in each node on search path.

insert interval (16, 22)
Interval search tree demo: insertion

To insert an interval \((lo, hi)\):
- Insert into BST, using \(lo\) as the key.
- Update max in each node on search path.

insert interval \((16, 22)\)
Interval search tree demo: intersection

To search for any one interval that intersects query interval \((lo, hi)\):

- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than \(lo\), go right.
- Else go left.

interval intersection search for \((21, 23)\)

\[(4, 8)\] 8
\[(5, 8)\] 22
\[(7, 10)\] 10
\[(15, 18)\] 22
\[(16, 22)\] 22
\[(21, 24)\] 24
\[(17, 19)\] 24

compare \((21, 23)\) to \((16, 22)\) (intersection!)
Search for an intersecting interval: implementation

To search for any one interval that intersects query interval \((lo, hi)\):

- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than \(lo\), go right.
- Else go left.

Node x = root;
while (x != null)
{
 if (x.interval.intersects(lo, hi)) return x.interval;
 else if (x.left == null) x = x.right;
 else if (x.left.max < lo) x = x.right;
 else x = x.left;
}
return null;
Search for an intersecting interval: analysis

To search for any one interval that intersects query interval \((lo, hi)\):

- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than \(lo\), go right.
- Else go left.

Case 1. If search goes right, then no intersection in left.

Pf. Suppose search goes right and left subtree is non empty.

- Since went right, we have \(max < lo\).
- For any interval \((a, b)\) in left subtree of \(x\),

 we have \(b \leq max < lo\).

- Thus, \((a, b)\) will not intersect \((lo, hi)\).
Search for an intersecting interval: analysis

To search for any one interval that intersects query interval \((lo, hi)\):
- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than \(lo\), go right.
- Else go left.

Case 2. If search goes **left**, then there is either an intersection in left subtree or no intersections in either.

Pf. Suppose no intersection in left.
- Since went left, we have \(lo \leq max\).
- Then for any interval \((a, b)\) in right subtree of \(x\),
 \(hi \leq c \leq a \Rightarrow\) no intersection in right.
Interval search tree: analysis

Implementation. Use a **red-black BST** to guarantee performance.

This structure is easy to maintain auxiliary information (log N extra work per operation).

<table>
<thead>
<tr>
<th>operation</th>
<th>brute</th>
<th>BST</th>
<th>interval search tree</th>
<th>best in theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert interval</td>
<td>N</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>find interval</td>
<td>N</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>delete interval</td>
<td>N</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>find any one interval that intersects (lo, hi)</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>find all intervals that intersects (lo, hi)</td>
<td>N</td>
<td>N</td>
<td>$R \log N$</td>
<td>$R + \log N$</td>
</tr>
</tbody>
</table>

order of growth of running time for data structure with N intervals
Geometric Applications of BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
Orthogonal rectangle intersection

Goal. Find all intersections among a set of N orthogonal rectangles.

Quadratic algorithm. Check all pairs of rectangles for intersection.

Non-degeneracy assumption. All x- and y-coordinates are distinct.
Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.
 • Very Large Scale Integration (VLSI).
 • Computer-Aided Design (CAD).

Design-rule checking.
 • Certain wires cannot intersect.
 • Certain spacing needed between different types of wires.
 • Debugging = orthogonal rectangle intersection search.
Moore’s law. Transistor count doubles every 2 years.
Sustaining Moore's law.

- Problem size doubles every 2 years.
- Processing power doubles every 2 years.
- How much $ do I need to get the job done with a quadratic algorithm?

\[
T_N = a N^2 \quad \text{running time today}
\]

\[
T_{2N} = \left(\frac{a}{2}\right) (2N)^2 = 2 T_N \quad \text{running time in 2 years}
\]

\[
= 2 a N^2
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>($X)</td>
<td>($X)</td>
<td>($X)</td>
<td>($X)</td>
</tr>
<tr>
<td>(N \log N)</td>
<td>($X)</td>
<td>($X)</td>
<td>($X)</td>
<td>($X)</td>
</tr>
<tr>
<td>(N^2)</td>
<td>($X)</td>
<td>($2X)</td>
<td>($4X)</td>
<td>($2^{15} X)</td>
</tr>
</tbody>
</table>

Bottom line. Linearithmic algorithm is necessary to sustain Moore's Law.
Orthogonal rectangle intersection: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates of left and right endpoints define events.
- Maintain set of rectangles that intersect the sweep line in an interval search tree (using y-intervals of rectangle).
- Left endpoint: interval search for y-interval of rectangle; insert y-interval.
- Right endpoint: remove y-interval.
Orthogonal rectangle intersection: sweep-line analysis

Proposition. Sweep line algorithm takes time proportional to $N \log N + R \log N$ to find R intersections among a set of N rectangles.

Pf.
- Put x-coordinates on a PQ (or sort). $\rightarrow N \log N$
- Insert y-intervals into ST. $\rightarrow N \log N$
- Delete y-intervals from ST. $\rightarrow N \log N$
- Interval searches for y-intervals. $\rightarrow N \log N + R \log N$

Bottom line. Sweep line reduces 2d orthogonal rectangle intersection search to 1d interval search.
Geometric applications of BSTs

<table>
<thead>
<tr>
<th>problem</th>
<th>example</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d range search</td>
<td></td>
<td>BST</td>
</tr>
<tr>
<td>2d orthogonal line segment intersection</td>
<td></td>
<td>sweep line reduces problem to 1d range search</td>
</tr>
<tr>
<td>2d range search</td>
<td></td>
<td>2d tree</td>
</tr>
<tr>
<td>kd range search</td>
<td></td>
<td>kd tree</td>
</tr>
<tr>
<td>1d interval search</td>
<td></td>
<td>interval search tree</td>
</tr>
<tr>
<td>2d orthogonal rectangle intersection</td>
<td></td>
<td>sweep line reduces problem to 1d interval search</td>
</tr>
</tbody>
</table>