4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context

Minimum spanning tree

Def. A spanning tree of G is a subgraph T that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

Minimum spanning tree

Def. A spanning tree of G is a subgraph T that is:

- Connected.
- Acyclic.
- Includes all of the vertices.
Minimum spanning tree

Def. A spanning tree of \(G \) is a subgraph \(T \) that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

Minimum spanning tree problem

Input. Connected, undirected graph \(G \) with positive edge weights.

![edge-weighted graph G](image)

minimum spanning tree \(T \)

(weight = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7)

Brute force. Try all spanning trees?

Minimum spanning tree

Def. A spanning tree of \(G \) is a subgraph \(T \) that is:

- Connected.
- Acyclic.
- Includes all of the vertices.
MST: quiz 1

Let G be a connected edge-weighted graph with V vertices and E edges. How many edges are in a MST of G?

A. $V - 1$

B. V

C. $E - 1$

D. E

E. I don’t know.

Network design

MST of bicycle routes in North Seattle

http://www.flickr.com/photos/owedistrict/21380840

Models of nature

MST of random graph

http://algo.inria.fr/broute/gallery.html

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bcrcc.ca/en/ta02_archlevel.html
4.3 MINIMUM SPANNING TREES

Simplifying assumptions

For simplicity, we assume
- The graph is connected. \(\Rightarrow\) MST exists.
- The edge weights are distinct. \(\Rightarrow\) MST is unique.

Applications

MST is fundamental problem with diverse applications.
- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

MST: quiz 2

Which is the min weight edge crossing the cut \{2, 3, 5, 6\}?

A. 0–7 (0.16)
B. 2–3 (0.17)
C. 0–2 (0.26)
D. 5–7 (0.28)
E. I don’t know.

Greedy MST algorithm demo

• Start with all edges colored gray.
• Find cut with no black crossing edges; color its min-weight edge black.
• Repeat until \(V-1\) edges are colored black.
Greedy MST algorithm demo

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until \(V - 1 \) edges are colored black.

![Greedy MST graph](image)

MST edges

0-2 5-7 6-2 0-7 2-3 1-7 4-5

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.

- Any edge colored black is in the MST (via cut property).
- Fewer than \(V - 1 \) black edges \(\Rightarrow \) cut with no black crossing edges.
 (consider cut whose vertices are any one connected component)

![MST graph with cut](image)

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST.

Efficient implementations. Find cut? Find min-weight edge?

- **Ex 1.** Kruskal's algorithm. [stay tuned]
- **Ex 2.** Prim's algorithm. [stay tuned]
- **Ex 3.** Borůvka's algorithm.

Removing two simplifying assumptions

Q. What if edge weights are not all distinct?

A. Greedy MST algorithm correct even if equal weights are present!
 (our correctness proof fails, but that can be fixed)

![Graph with equal weights](image)

Q. What if graph is not connected?

A. Compute minimum spanning forest = MST of each component.

![Graph with disconnected components](image)
Greed is good

Gordon Gecko (Michael Douglas) address to Teldar Paper Stockholders in Wall Street (1986)

4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- context

Weighted edge API

Edge abstraction needed for weighted edges.

```
public class Edge implements Comparable<Edge>
{
    private final int v, w;
    private final double weight;

    public Edge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int either()
    {
        return v;
    }

    public int other(int vertex)
    {
        if (vertex == v) return w;
        else return v;
    }

    public int compareTo(Edge that)
    {
        if (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return 1;
        else return 0;
    }
}
```

Weighted edge: Java implementation

Idiom for processing an edge e: int v = e.either(), w = e.other(v);
Conventions. Allow self-loops and parallel edges.

Edge-weighted graph API

- public class EdgeWeightedGraph
- EdgeWeightedGraph(int V)
- create an empty graph with V vertices
- EdgeWeightedGraph(In in)
- create a graph from input stream
- void addEdge(Edge e)
- add weighted edge e to this graph
- Iterable<Edge> adj(int v)
- edges incident to v
- Iterable<Edge> edges()
- all edges in this graph
- int V()
- number of vertices
- int E()
- number of edges
- String toString()
- string representation

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Minimum spanning tree API

Q. How to represent the MST?

- public class MST
 - constructor
 - Iterable<Edge> edges()
 - edges in MST
 - double weight()
 - weight of MST
Minimum spanning tree API

Q. How to represent the MST?

```java
public class MST
{
    MST(EdgeWeightedGraph G)
    constructor
    Iterable<Edge> edges()
    edges in MST
    double weight()
    weight of MST
}
```

```java
class MST
{
    private EdgeWeightedGraph edges;
    private double weight;
    MST(EdgeWeightedGraph G)
    constructor
    for (Edge e : G)
    edges.add(e);
    double weight()
    weight of MST
}
```

Kruskal's algorithm demo

Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

- an edge-weighted graph
- a minimum spanning tree
Kruskal’s algorithm: visualization

Kruskal’s algorithm computes the MST.

Pf. Suppose Kruskal’s algorithm colors the edge $e = v\rightarrow w$ black.

- Cut $= \text{set of vertices connected to } v \text{ in tree } T$.
- No crossing edge is black.
- No crossing edge has lower weight. Why?

![Graph with edges colored]

Kruskal’s algorithm: correctness proof

Challenge. Would adding edge $v\rightarrow w$ to tree T create a cycle? If not, add it.

How difficult to implement?

A. $E + V$
B. V
C. $\log V$
D. $\log^* V$
E. 1

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in the same set, then adding $v\rightarrow w$ would create a cycle.
- To add $v\rightarrow w$ to T, merge sets containing v and w.

Add edge to tree

Case 1: adding $v\rightarrow w$ creates a cycle

Case 2: add $v\rightarrow w$ to T and merge sets containing v and w.
Kruskal's algorithm: Java implementation

```java
public class KruskalMST {
    private Queue<Edge> mst = new Queue<Edge>();

    public KruskalMST(EdgeWeightedGraph G) {
        MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
        UF uf = new UF(G.V());
        while (!pq.isEmpty() && mst.size() < G.V()-1) {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (!uf.connected(v, w)) {
                uf.union(v, w);
                mst.enqueue(e);
            }
        }
    }

    public Iterable<Edge> edges() {
        return mst;
    }
}
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>build pq</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>delete-min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>union</td>
<td>V</td>
<td>$\log* V$</td>
</tr>
<tr>
<td>connected</td>
<td>E</td>
<td>$\log* V$</td>
</tr>
</tbody>
</table>

† amortized bound using weighted quick union with path compression

Remark. If edges are already sorted, order of growth is $E \log* V$.

4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- context

Prim’s algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

![Prim's algorithm demo](image)

an edge-weighted graph

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

Prim's algorithm: visualization

Prim's algorithm demo

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]
Prim’s algorithm computes the MST.

Pf. Prim’s algorithm is a special case of the greedy MST algorithm.
- Suppose edge $e = \text{min weight edge connecting a vertex on the tree to a vertex not on the tree.}$
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

A. E
B. V
C. $\log E$
D. 1
E. I don't know.
Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge $e = v - w$ to add to T.
- Disregard if both endpoints v and w are marked (both in T).
- Otherwise, let w be the unmarked vertex (not in T):
 - add to PQ any edge incident to w (assuming other endpoint not in T)
 - add e to T and mark w

Start with vertex 0 and greedily grow tree T.
Add to T the min weight edge with exactly one endpoint in T.
Repeat until $V - 1$ edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2
Prim's algorithm: lazy implementation

```java
private void visit(WeightedGraph G, int v) {
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst() {
    return mst;
}
```

Lazy Prim's algorithm: running time

Proposition. Lazy Prim’s algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>$\log E$</td>
</tr>
</tbody>
</table>

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only shortest edge connecting v to T.
- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it can take cheapest such edge. Why?

Prim's algorithm: eager implementation demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V - 1$ edges.

![an edge-weighted graph](image-url)
Prim's algorithm: eager implementation demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
v edgeTo[] distTo[]
0   -    -
7   0-7   0.16
1   1-7   0.19
2   0-2   0.26
3   2-3   0.17
5   5-7   0.28
4   4-5   0.35
6   6-2   0.40
```

MST edges
0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by and edge to T, where priority of vertex v = weight of shortest edge connecting v to T.
- Delete min vertex v and add its associated edge $e = v \rightarrow w$ to T.
- Update PQ by considering all edges $e = v \rightarrow x$ incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if $v \rightarrow x$ becomes shortest edge connecting x to T

Indexed priority queue

Associate an index between 0 and $N-1$ with each key in a priority queue.
- Supports insert and delete-the-minimum.
- Supports decrease-key given the index of the key.

```
public class IndexedMinPQ<Key extends Comparable<Key>>

    IndexMinPQ(int N) create indexed priority queue with indices 0, 1, ..., N-1
    void insert(int i, Key key) associate key with index i
    void decreaseKey(int i, Key key) decrease the key associated with index i
    boolean contains(int i) is i an index on the priority queue?
    int deleteMin() remove a minimal key and return its associated index
    boolean isEmpty() is the priority queue empty?
    int size() number of keys in the priority queue
```

Indexed priority queue implementation

Binary heap implementation. [see Section 2.4 of textbook]
- Start with same code as MinPQ.
- Maintain parallel arrays keys[], pq[], and qp[] so that:
 - keys[i] is the priority of i
 - pq[i] is the index of the key in heap position i
 - qp[i] is the heap position of the key with index i
- Use swim(qp[i]) to implement decreaseKey(i, key).

```
i 0 1 2 3 4 5 6 7 8
keys[i] A S O R T I N G -
pq[1] - 0 6 7 2 1 5 4 3
qp[1] 1 5 4 8 7 6 2 3 -
```

black: on MST
red: on PQ
pq has at most one entry per vertex

pqY has at most one entry per vertex

```
i 0 1 2 3 4 5 6 7 8
keys[i] A S O R T I N G -
pq[1] - 0 6 7 2 1 5 4 3
qp[1] 1 5 4 8 7 6 2 3 -
```

black: on MST
red: on PQ
pqY has at most one entry per vertex

pqY has at most one entry per vertex

```
i 0 1 2 3 4 5 6 7 8
keys[i] A S O R T I N G -
pq[1] - 0 6 7 2 1 5 4 3
qp[1] 1 5 4 8 7 6 2 3 -
```

black: on MST
red: on PQ
pqY has at most one entry per vertex

pqY has at most one entry per vertex
Prim's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ Implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$E \log V$</td>
</tr>
<tr>
<td>d–way heap</td>
<td>$\log_d V$</td>
<td>$d \log_d V$</td>
<td>$\log_d V$</td>
<td>$E \log_{d+1} V$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>1 (^\dagger)</td>
<td>$\log V$ (^\dagger)</td>
<td>1 (^\dagger)</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

\(^\dagger\) amortized

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Does a linear-time MST algorithm exist?

<table>
<thead>
<tr>
<th>deterministic compare–based MST algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1975</td>
</tr>
<tr>
<td>1976</td>
</tr>
<tr>
<td>1984</td>
</tr>
<tr>
<td>1986</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>20xx</td>
</tr>
</tbody>
</table>

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

4.3 Minimum Spanning Trees

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- context

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute $\sim N^2/2$ distances and run Prim’s algorithm.

Ingenuity. Exploit geometry and do it in $N \log N$ time.
Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

Applications.
- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- SkyCat: cluster 10^9 sky objects into stars, quasars, galaxies.

Single-link clustering algorithm

"Well-known" algorithm in science literature for single-link clustering:
- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm. (stopping when k connected components)

Alternate solution. Run Prim; then delete $k-1$ max weight edges.