4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http://blog.uber.com/2012/01/09/uberdata-san-francisco-comics/

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

[Diagram of WordNet graph with nodes and edges representing relationships between words, including examples such as "event → miracle" and "happening occurrence → natural_event"]

[Link to WordNet: http://wordnet.princeton.edu]

Some digraph problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s→t path</td>
<td>Is there a path from s to t?</td>
</tr>
<tr>
<td>shortest s→t path</td>
<td>What is the shortest path from s to t?</td>
</tr>
<tr>
<td>directed cycle</td>
<td>Is there a directed cycle in the graph?</td>
</tr>
<tr>
<td>topological sort</td>
<td>Can the digraph be drawn so that all edges point upwards?</td>
</tr>
<tr>
<td>strong connectivity</td>
<td>Is there a directed path between all pairs of vertices?</td>
</tr>
<tr>
<td>transitive closure</td>
<td>For which vertices v and w is there a directed path from v to w?</td>
</tr>
<tr>
<td>PageRank</td>
<td>What is the importance of a web page?</td>
</tr>
</tbody>
</table>

Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>

4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Digraph API

Almost identical to Graph API.

```java
public class Digraph {
    public Digraph(int V) { /* create an empty digraph with V vertices */ }
    public Digraph(In in) { /* create a digraph from input stream */ }
    void addEdge(int v, int w) { /* add a directed edge v→w */ }
    Iterable<Integer> adj(int v) { /* vertices adjacent from v */ }
    int V() { /* number of vertices */ }
    int E() { /* number of edges */ }
    Digraph reverse() { /* reverse of this digraph */ }
    String toString() { /* string representation */ }
}
```

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.

Directed graphs: quiz 1

Which is order of growth of running time to iterate over all vertices adjacent from v in a digraph using the adjacency-lists representation?

A. indegree(v)
B. outdegree(v)
C. degree(v)
D. V
E. I don't know.
Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent from \(v \).
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from (v) to (w)</th>
<th>edge from (v) to (w)</th>
<th>iterate over vertices adjacent from (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>(E)</td>
<td>1</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>(V^2)</td>
<td>(1)</td>
<td>(1)</td>
<td>(V)</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>(E + V)</td>
<td>1</td>
<td>(\text{outdegree}(v))</td>
<td>(\text{outdegree}(v))</td>
</tr>
</tbody>
</table>

\(^1\) disallows parallel edges

Adjacency-lists digraph representation: Java implementation

```java
public class Digraph
{
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Adjacency-lists graph representation (review): Java implementation

```java
public class Graph
{
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```
Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a *digraph* algorithm.

Depth-first search demo

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.

Depth-first search demo

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.

Depth-first search demo

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Marked</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

a directed graph

reachable from 0
Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
- Reachability.
- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.
- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

Breadth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v
 - for each unmarked vertex adjacent from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.

Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.
Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v \) from queue.
- Add to queue all unmarked vertices adjacent from \(v \) and mark them.

\[
\begin{array}{c|c|c}
 v & \text{edgeTo}[] & \text{distTo}[] \\
\hline
0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
5 & 3 & 4 \\
\end{array}
\]

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say \(\text{www.princeton.edu} \).

Solution. [BFS with implicit digraph]
- Choose root web page as source \(s \).
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?

MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. \(S = \{1, 7, 10\} \).
- Shortest path to 4 is \(7 \rightarrow 6 \rightarrow 4 \).
- Shortest path to 5 is \(7 \rightarrow 6 \rightarrow 0 \rightarrow 5 \).
- Shortest path to 12 is \(10 \rightarrow 12 \).

Q. How to implement multi-source shortest paths algorithm?

Bare-bones web crawler: Java implementation

```
Queue<String> q = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
q.enqueue(root);
marked.add(root);

while (!q.isEmpty()) {
    String v = q.dequeue();
    StdOut.println(v);
    String input = In.readLine();
    String regexp = "http://(\w\d\W)\w\w\w\W";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find()) {
        String w = matcher.group();
        if (!marked.contains(w)) {
            marked.add(w);
            q.enqueue(w);
        }
    }
}
```
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

```
tinyDAG7.txt
7
11
0 5
0 2
0 1
3 6
3 5
3 4
5 2
6 4
6 0
3 2
```

```
Topological sort demo
- Run depth-first search.
- Return vertices in reverse postorder.

```
Depth-first search order
```

```java
public class DepthFirstOrder {
 private boolean[] marked;
 private Stack<Integer> reversePostorder;

 public DepthFirstOrder(Digraph G) {
 reversePostorder = new Stack<Integer>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);

 private void dfs(Digraph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 reversePostorder.push(v);
 }

 public Iterable<Integer> reversePostorder() {
 return reversePostorder;
 }
 }
}
```

Why does topological sort algorithm work?
- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...

Topological sort in a DAG: intuition

returns all vertices in "reverse DFS postorder"
Topological sort in a DAG: correctness proof

**Proposition.** Reverse DFS postorder of a DAG is a topological order.

**Pf.** Consider any edge $v \to w$. When $dfs(v)$ is called:

- **Case 1:** $dfs(w)$ has already been called and returned.
  - thus, $w$ appears before $v$ in postorder

- **Case 2:** $dfs(w)$ has not yet been called.
  - $dfs(w)$ will get called directly or indirectly by $dfs(v)$
  - so, $dfs(w)$ will finish before $dfs(v)$
  - thus, $w$ appears before $v$ in postorder

- **Case 3:** $dfs(w)$ has already been called, but has not yet returned.
  - function-call stack contains path from $w$ to $v$
  - so $v \to w$ would complete a cycle (contradiction)

Directed cycle detection

**Proposition.** A digraph has a topological order iff no directed cycle.

**Pf.**
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

**Goal.** Given a digraph, find a directed cycle.

**Solution.** DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

**Scheduling.** Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>PREREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER SCIENCE</td>
<td>CPSC 432</td>
<td>INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.</td>
<td>CPSC 432</td>
</tr>
</tbody>
</table>

[http://xkcd.com/754](http://xkcd.com/754)

**Remark.** A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
% javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B { }
^ 1 error
```

```
public class B extends C {
 ...
}
```

```
public class C extends A {
 ...
}
```
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Directed cycle detection application: spreadsheet recalculation

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.
- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

Depth-first search orders

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.
Directed graphs: quiz 2

How many strong components are in a DAG with \( V \) vertices and \( E \) edges?

A. 0  
B. 1  
C. \( V \)  
D. \( E \)  
E. I don’t know.

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w  
v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

Connected component id (easy to compute with DFS)

<table>
<thead>
<tr>
<th>v</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[v]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Strongly-connected component id (how to compute?)

<table>
<thead>
<tr>
<th>v</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[v]</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Constant-time client connectivity query

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.  
- Vertex = software module.  
- Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.  
Approach 2. Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in $G$ are same as in $G^R$.

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in $G^R$.
Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^R$. 
Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^R$.

1 0 2 4 5 3 11 9 12 10 6 7 8

done

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on $G^R$ to compute reverse postorder.
- Phase 2: run DFS on $G$, considering vertices in order given by first DFS.

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.
- Running time: bottleneck is running DFS twice (and computing $G^R$).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
**Connected components in an undirected graph (with DFS)**

```java
public class CC {
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G) {
 marked = new boolean[G.V];
 id = new int[G.V];
 for (int v = 0; v < G.V; v++)
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }

 private void dfs(Graph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w) {
 return id[v] == id[w];
 }
}
```

**Strong components in a digraph (with two DFSs)**

```java
public class KosarajuSharirSCC {
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSharirSCC(Graph G) {
 marked = new boolean[G.V];
 id = new int[G.V];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePostorder())
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }

 private void dfs(Graph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w) {
 return id[v] == id[w];
 }
}
```

**Digraph-processing summary: algorithms of the day**

- **single-source reachability in a digraph**
  - **DFS**

- **topological sort in a DAG**
  - **DFS**

- **strong components in a digraph**
  - Kosaraju-Sharir DFS (twice)**