3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
Symbol table review

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>log N</td>
<td>N</td>
<td>N</td>
<td>log N</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>log N</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
2-3 tree

Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

![Diagram of 2-3 tree]

how to maintain?

2-node

smaller than E

larger than J

between E and J

null link
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H
2-3 tree: insertion

Insertion into a 2-node at bottom.
- Add new key to 2-node to create a 3-node.

insert G

Before insertion:

```
L
 E
 |  
 A C  H  P  S X
```

After insertion:

```
L
 E
 |  
 A C  G H  P  S X
```
2-3 tree: insertion

Insertion into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

```
2-3 tree: insertion

Insertion into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

```

```
2-3 tree construction demo

insert S
2-3 tree construction demo

2–3 tree

```
 L
 / \
E R
 / / \ / /
A C H P S X
```
2-3 tree: global properties

**Invariants.** Maintains symmetric order and perfect balance.

**Pf.** Each transformation maintains symmetric order and perfect balance.
Splitting a 4-node is a **local** transformation: constant number of operations.
Balanced search trees: quiz 1

What is the height of a 2-3 tree with $N$ keys in the worst case?

A. $\sim \log_3 N$
B. $\sim \log_2 N$
C. $\sim 2 \log_2 N$
D. $\sim N$
E. I don't know.
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.
## ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>2−3 tree</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

> but hidden constant $c$ is large (depends upon implementation)
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

```java
public void put(Key key, Value val) {
 Node x = root;
 // ... (previous code)

 "Beautiful algorithms are not always the most useful."
 — Donald Knuth

 // ... (rest of the code)
}
```

Bottom line. Could do it, but there's a better way.
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
How to implement 2-3 trees with binary trees?

**Challenge.** How to represent a 3 node?

**Approach 1.** Regular BST.
- No way to tell a 3-node from a 2-node.
- Cannot map from BST back to 2-3 tree.

**Approach 2.** Regular BST with red "glue" nodes.
- Wastes space, wasted link.
- Code probably messy.

**Approach 3.** Regular BST with red "glue" links.
- Widely used in practice.
- Arbitrary restriction: red links lean left.
Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.
Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

**Key property.** 1–1 correspondence between 2–3 and LLRB.
An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

"perfect black balance"
Search implementation for red-black BSTs

**Observation.** Search is the same as for elementary BST (ignore color).

```java
public Val get(Key key) {
 Node x = root;
 while (x != null) {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}
```

**Remark.** Most other ops (e.g., floor, iteration, selection) are also identical.
Red-black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒ can encode color of links in nodes.

```java
private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node {
 Key key;
 Value val;
 Node left, right;
 boolean color; // color of parent link
}

private boolean isRed(Node x) {
 if (x == null) return false;
 return x.color == RED;
}
```

null links are black

h.left.color is RED

h.right.color is BLACK
**Insertion into a LLRB tree: overview**

**Basic strategy.** Maintain 1-1 correspondence with 2-3 trees.

**During internal operations, maintain:**
- Symmetric order.
- Perfect black balance.

[ but not necessarily color invariants ]

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="right-tilted-red" alt="Diagram" /></td>
<td>right-leaning red link</td>
</tr>
<tr>
<td><img src="two-red-children" alt="Diagram" /></td>
<td>two red children (a temporary 4-node)</td>
</tr>
<tr>
<td><img src="left-left-red" alt="Diagram" /></td>
<td>left-left red (a temporary 4-node)</td>
</tr>
<tr>
<td><img src="left-right-red" alt="Diagram" /></td>
<td>left-right red (a temporary 4-node)</td>
</tr>
</tbody>
</table>

**How?** Apply elementary red-black BST operations: rotation and color flip.
Elementary red-black BST operations

**Left rotation.** Orient a (temporarily) right-leaning red link to lean left.

```
private Node rotateLeft(Node h) {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}
```

**Invariants.** Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.

```java
private Node rotateLeft(Node h) {
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}
```
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

**Right rotation.** Orient a left-leaning red link to (temporarily) lean right.

![Diagram of right rotation]

```
private Node rotateRight(Node h) {
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
}
```

**Invariants.** Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

**Color flip.** Recolor to split a (temporary) 4-node.

```java
private void flipColors(Node h) {
 assert !isRed(h);
 assert isRed(h.left);
 assert isRed(h.right);
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}
```

**Invariants.** Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

**Color flip.** Recolor to split a (temporary) 4-node.

![Diagram of color flip]

```java
private void flipColors(Node h) {
 assert !isRed(h);
 assert isRed(h.left);
 assert isRed(h.right);
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}
```

**Invariants.** Maintains symmetric order and perfect black balance.
**Insertion into a LLRB tree**

**Warmup 1.** Insert into a tree with exactly 1 node.
Insertion into a LLRB tree

**Case 1.** Insert into a 2-node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

To maintain symmetric order and perfect black balance.
To fix color invariants.

```
\begin{tikzpicture}
 \node (E) at (0,0) {E};
 \node (A) at (-1,-1) {A};
 \node (R) at (0,-1) {R};
 \node (S) at (1,-1) {S};
 \draw (E) -- (A);
 \draw (E) -- (R);
 \draw (E) -- (S);
 \node (C) at (-1,-2) {C};
 \node (A) at (-2,-3) {A};
 \node (R) at (-1,-3) {R};
 \node (S) at (0,-3) {S};
 \draw (C) -- (A);
 \draw (C) -- (R);
 \draw (C) -- (S);
 \node (E) at (1,-2) {E};
 \node (A) at (2,-3) {A};
 \node (R) at (1,-3) {R};
 \node (S) at (0,-3) {S};
 \draw (E) -- (A);
 \draw (E) -- (R);
 \draw (E) -- (S);
 \node (C) at (0,-2) {C};
 \node (C) at (-1,-3) {C};
 \node (R) at (0,-3) {R};
 \node (S) at (1,-3) {S};
 \draw (C) -- (C);
 \draw (C) -- (R);
 \draw (C) -- (S);
 \node (E) at (-1,-2) {E};
 \node (A) at (-2,-3) {A};
 \node (R) at (-1,-3) {R};
 \node (S) at (0,-3) {S};
 \draw (E) -- (A);
 \draw (E) -- (R);
 \draw (E) -- (S);
 \node (C) at (1,-2) {C};
 \node (C) at (2,-3) {C};
 \node (R) at (1,-3) {R};
 \node (S) at (0,-3) {S};
 \draw (C) -- (C);
 \draw (C) -- (R);
 \draw (C) -- (S);
\end{tikzpicture}
```
**Warmup 2.** Insert into a tree with exactly 2 nodes.

**Larger:**
- Search ends at this null link
- Attached new node with red link
- Colors flipped to black

**Smaller:**
- Search ends at this null link
- Attached new node with red link
- Rotated right
- Colors flipped to black

**Between:**
- Search ends at this null link
- Attached new node with red link
- Rotated left
- Rotated right
- Colors flipped to black
**Insertion into a LLRB tree**

**Case 2.** Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
Insertion into a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).
Red-black BST construction demo

insert $S$
Red-black BST construction demo

red–black BST
Insertion into a LLRB tree: Java implementation

**Same code for all cases.**
- Right child red, left child black: **rotate left.**
- Left child, left-left grandchild red: **rotate right.**
- Both children red: **flip colors.**

```java
private Node put(Node h, Key key, Value val)
{
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else if (cmp == 0) h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);

 return h;
}
```

Only a few extra lines of code provides near-perfect balance.
Insertion into a LLRB tree: visualization

255 insertions in ascending order
Insertion into a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in descending order
Insertion into a LLRB tree: visualization

255 random insertions
What is the height of a LLRB tree with $N$ keys in the worst case?

A. $\sim \log_3 N$
B. $\sim \log_2 N$
C. $\sim 2 \log_2 N$
D. $\sim N$
E. *I don't know.*
Balance in LLRB trees

**Proposition.** Height of tree is $\leq 2 \lg N$ in the worst case.

**Pf.**
- Black height = height of corresponding 2-3 tree $\leq \lg N$.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.0 \lg N$ in typical applications.
<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th></th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td></td>
</tr>
<tr>
<td>sequential search</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>equals()</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>log $N$</td>
<td>$N$</td>
<td>$N$</td>
<td>log $N$</td>
<td>✔</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td>$N$</td>
<td>compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>log $N$</td>
<td>✔</td>
</tr>
<tr>
<td>2–3 tree</td>
<td>log $N$</td>
<td>log $N$</td>
<td>log $N$</td>
<td>log $N$</td>
<td>✔</td>
</tr>
<tr>
<td>red–black BST</td>
<td>log $N$</td>
<td>log $N$</td>
<td>log $N$</td>
<td>log $N$</td>
<td>✔</td>
</tr>
</tbody>
</table>

hidden constant $c$ is small (at most $2 \log N$ compares)
Red-black BST representation. BST, where each node has a color bit.

Challenge. Represent without using extra memory for color.
Xerox PARC innovations. [1970s]

- Alto.
- GUI.
- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.
- ...

---

**A Dichromatic Framework For Balanced Trees**

Leo J. Guibas  
*Xerox Palo Alto Research Center, Palo Alto, California, and Carnegie-Mellon University*

Robert Sedgewick*  
Program in Computer Science  
*Brown University*  
Providence, R.I.

**Abstract**

In this paper we present a uniform framework for the implementation and study of balanced tree algorithms. We show how to imbed in this

...
War story: red-black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.

- Red-black BST search and insert; Hibbard deletion.
- Exceeding height limit of 80 triggered error-recovery process.

Extended telephone service outage.

- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

> “If implemented properly, the height of a red-black BST with $N$ keys is at most $2 \log N$. ” — expert witness
3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees
**File system model**

**Page.** Contiguous block of data (e.g., a file or 4,096-byte chunk).

**Probe.** First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.
B-trees (Bayer-McCreight, 1972)

**B-tree.** Generalize 2-3 trees by allowing up to $M - 1$ key-link pairs per node.
- At least 2 key-link pairs at root.
- At least $M / 2$ key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

choose $M$ as large as possible so that $M$ links fit in a page, e.g., $M = 1024$
Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

Searching in a B-tree set (M = 6)
Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with $M$ key-link pairs on the way up the tree.
Balance in B-tree

**Proposition.** A search or an insertion in a B-tree of order $M$ with $N$ keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

**Pf.** All internal nodes (besides root) have between $M/2$ and $M-1$ links.

**In practice.** Number of probes is at most 4. \[ M = 1024; N = 62 \text{ billion} \]

**Optimization.** Always keep root page in memory.
Building a large B tree

- Each line shows the result of inserting one key in some page.
- Full page, about to split.
- Full page splits into two half-full pages then a new key is added to one of them.
- White: unoccupied portion of page.
- Black: occupied portion of page.
Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.
- Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: NTFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.
Red-black BSTs in the wild

Common sense. Sixth sense. Together they're the FBI's newest team.
Antonio refers to his COMPUTER SCREEN, which is filled with mathematical equations.

ANTONIO
It could be an algorithm from a binary search tree. A red-black tree tracks every simple path from a node to a descendant leaf with the same number of black nodes.

JESS
Does that help you with girls?