2.4 **Priority Queues**

- API and elementary implementations
- *binary heaps*
- *heapsort*
- *event-driven simulation*
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
A collection is a data type that stores a group of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>key operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>Push, Pop</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>queue</td>
<td>Enqueue, Dequeue</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>priority queue</td>
<td>insert, Delete-Max</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>Put, Get, Delete</td>
<td>binary search tree, hash table</td>
</tr>
<tr>
<td>set</td>
<td>Add, Contains, Delete</td>
<td>binary search tree, hash table</td>
</tr>
</tbody>
</table>

“Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>
Priority queue API

Requirement. Items are generic; they must also be Comparable.

```java
public class MaxPQ<Key extends Comparable<Key>>
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxPQ()</td>
<td>create an empty priority queue</td>
</tr>
<tr>
<td>MaxPQ(Key[] a)</td>
<td>create a priority queue with given keys</td>
</tr>
<tr>
<td>void insert(Key v)</td>
<td>insert a key into the priority queue</td>
</tr>
<tr>
<td>Key delMax()</td>
<td>return and remove the largest key</td>
</tr>
<tr>
<td>boolean isEmpty()</td>
<td>is the priority queue empty?</td>
</tr>
<tr>
<td>Key max()</td>
<td>return the largest key</td>
</tr>
<tr>
<td>int size()</td>
<td>number of entries in the priority queue</td>
</tr>
</tbody>
</table>
Priority queue: applications

- Event-driven simulation.
 - customers in a line, colliding particles
- Numerical computation.
 - reducing roundoff error
- Discrete optimization.
 - bin packing, scheduling
- Artificial intelligence.
 - A* search
- Computer networks.
 - web cache
- Operating systems.
 - load balancing, interrupt handling
- Data compression.
 - Huffman codes
- Graph searching.
 - Dijkstra's algorithm, Prim's algorithm
- Number theory.
 - sum of powers
- Spam filtering.
 - Bayesian spam filter
- Statistics.
 - online median in data stream

Generalizes: stack, queue, randomized queue.
Priority queue: client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $\$$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

<table>
<thead>
<tr>
<th>% more transactions.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing 6/17/1990 644.08</td>
</tr>
<tr>
<td>vonNeumann 3/26/2002 4121.85</td>
</tr>
<tr>
<td>Dijkstra 8/22/2007 2678.40</td>
</tr>
<tr>
<td>vonNeumann 1/11/1999 4409.74</td>
</tr>
<tr>
<td>Dijkstra 11/18/1995 837.42</td>
</tr>
<tr>
<td>Hoare 5/10/1993 3229.27</td>
</tr>
<tr>
<td>vonNeumann 2/12/1994 4732.35</td>
</tr>
<tr>
<td>Hoare 8/18/1992 4381.21</td>
</tr>
<tr>
<td>Turing 1/11/2002 66.10</td>
</tr>
<tr>
<td>Thompson 2/27/2000 4747.08</td>
</tr>
<tr>
<td>Turing 2/11/1991 2156.86</td>
</tr>
<tr>
<td>Hoare 8/12/2003 1025.70</td>
</tr>
<tr>
<td>vonNeumann 10/13/1993 2520.97</td>
</tr>
<tr>
<td>Dijkstra 9/10/2000 708.95</td>
</tr>
<tr>
<td>Turing 10/12/1993 3532.36</td>
</tr>
<tr>
<td>Hoare 2/10/2005 4050.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% java TopM 5 < transactions.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson 2/27/2000 4747.08</td>
</tr>
<tr>
<td>vonNeumann 2/12/1994 4732.35</td>
</tr>
<tr>
<td>vonNeumann 1/11/1999 4409.74</td>
</tr>
<tr>
<td>Hoare 8/18/1992 4381.21</td>
</tr>
<tr>
<td>vonNeumann 3/26/2002 4121.85</td>
</tr>
</tbody>
</table>
Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```java
MinPQ<Transaction> pq = new MinPQ<Transaction>();

while (StdIn.hasNextLine())
{
    String line = StdIn.readLine();
    Transaction item = new Transaction(line);
    pq.insert(item);
    if (pq.size() > M)
    {
        pq.delMin();
    }
}
```

Transaction data type is Comparable (ordered by $$)

use a min-oriented pq

pq now contains largest M items
Priority queue: client example

Challenge. Find the largest M items in a stream of N items.

<table>
<thead>
<tr>
<th>implementation</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>$N \log N$</td>
<td>N</td>
</tr>
<tr>
<td>elementary PQ</td>
<td>$M N$</td>
<td>M</td>
</tr>
<tr>
<td>binary heap</td>
<td>$N \log M$</td>
<td>M</td>
</tr>
<tr>
<td>best in theory</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>

order of growth of finding the largest M in a stream of N items
Priority queue: unordered and ordered array implementation

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td>2</td>
<td>P E</td>
<td>E P</td>
<td>E P</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td>4</td>
<td>P E X A</td>
<td>A E P X</td>
<td>A E P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td>5</td>
<td>P E X A M</td>
<td>A E M P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>4</td>
<td>P E M A</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td>5</td>
<td>P E M A P</td>
<td>A E M P P</td>
<td>A E M P P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>6</td>
<td>P E M A P L</td>
<td>A E L M</td>
<td>A E L M</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>7</td>
<td>P E M A P L E</td>
<td>A E E L M</td>
<td>A E E L M</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td>6</td>
<td>E M A P L E</td>
<td>A E E L M P</td>
<td>A E E L M P</td>
</tr>
</tbody>
</table>

A sequence of operations on a priority queue
Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with N items
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

![Complete binary tree with N = 16 nodes (height = 4)]

Property. Height of complete binary tree with \(N \) nodes is \(\lceil \lg N \rceil \).

Pf. Height increases only when \(N \) is a power of 2.
A complete binary tree in nature
Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!
Binary heap: properties

Proposition. Largest key is $a[1]$, which is root of binary tree.

Proposition. Can use array indices to move through tree.
- Parent of node at k is at $k/2$.
- Children of node at k are at $2k$ and $2k+1$.
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

![Binary heap diagram]

- **T** (root)
- **P**
 - **N**
 - **E**
 - **H**
 - **I**
 - **G**
- **R**
 - **O**
 - **A**

Heap ordered

| T | P | R | N | H | O | A | E | I | G |
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Binary heap: promotion

Scenario. A key becomes *larger* than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Binary heap: insertion

Insert. Add node at end, then swim it up.

Cost. At most $1 + \lg N$ compares.

```java
public void insert(Key x)
{
    pq[++N] = x;
    swim(N);
}
```
Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children's.

To eliminate the violation:
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k)
{
    while (2*k <= N)
    {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Binary heap: delete the maximum

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \lg N$ compares.

```java
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = null;
    return max;
}
```
Binary heap: Java implementation

```java
public class MaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq;
    private int N;

    public MaxPQ(int capacity)
    {  pq = (Key[]) new Comparable[capacity+1];  }

    public boolean isEmpty()
    {  return N == 0;  }
    public void insert(Key key)   // see previous code
    public Key delMax()          // see previous code

    private void swim(int k)     // see previous code
    private void sink(int k)     // see previous code

    private boolean less(int i, int j)
    {  return pq[i].compareTo(pq[j]) < 0;  }
    private void exch(int i, int j)
    {  Key t = pq[i]; pq[i] = pq[j]; pq[j] = t;  }
}
```

- fixed capacity (for simplicity)
- PQ ops
- heap helper functions
- array helper functions
<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
</tbody>
</table>

Order-of-growth of running time for priority queue with N items
Goal. Delete a random key from a binary heap in logarithmic time.
Binary heap: practical improvements

Do "half-exchanges" in sink and swim.

- Reduces number of array accesses.
- Worth doing.
Binary heap: practical improvements

Floyd's "bounce" heuristic.
- Sink key at root all the way to bottom. \(\leftarrow\) only 1 compare per node
- Swim key back up. \(\leftarrow\) some extra compares and exchanges
- Overall, fewer compares; more exchanges.
- Worthwhile depending on cost of compare and exchange.

R. W. Floyd
1978 Turing award
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

Binary heap memory layout (page size = 8 nodes)
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

- Cache-aligned d-heap.
- Funnel heap.
- B-heap.
- ...

B-heap memory layout (page size = 8 nodes)
Multiway heaps.
 - Complete d-way tree.
 - Parent's key no smaller than its children's keys.

Fact. Height of complete d-way tree on N nodes is $\sim \log_d N$.

3-way heap
How many compares (in the worst case) to insert in a d-way heap?

A. $\sim \log_2 N$

B. $\sim \log_d N$

C. $\sim d \log_2 N$

D. $\sim d \log_d N$

E. I don't know.
Priority queues: quiz 2

How many compares (in the worst case) to delete-max in a d-way heap?

A. $\sim \log_2 N$

B. $\sim \log_d N$

C. $\sim d \log_2 N$

D. $\sim d \log_d N$

E. I don't know.
Priority queue: implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>log N</td>
<td>log N</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>log$_d$N</td>
<td>d log$_d$N</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>log N †</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>log N</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

† amortized

Sweet spot: $d = 4$

Why impossible?

Order-of-growth of running time for priority queue with N items
Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace less() with greater().
- Implement greater().

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

leads to log N amortized time per op (how to make worst case?)
can implement efficiently with sink() and swim()[stay tuned for Prim/Dijkstra]
Immutability: implementing in Java

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

```java
public final class Vector {
    private final int N;
    private final double[] data;

    public Vector(double[] data) {
        this.N = data.length;
        this.data = new double[N];
        for (int i = 0; i < N; i++)
            this.data[i] = data[i];
    }
    ...
}
```

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.

Mutable. StringBuilder, Stack, Counter, Java array.
Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.

• Simplifies debugging.
• Safer in presence of hostile code.
• Simplifies concurrent programming.
• Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible.”

— Joshua Bloch (Java architect)
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
What is the name of this sorting algorithm?

```java
public void sort(String[] a) {
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

A. Insertion sort.
B. Mergesort.
C. Quicksort.
D. None of the above.
E. I don't know.
What are its properties?

```java
public void sort(String[] a) {
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

A. \(N \log N \) compares in the worst case.

B. In-place.

C. Stable.

D. All of the above.

E. I don't know.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all N keys.
- Sortdown: repeatedly remove the maximum key.
Heapsort demo

Heap construction. Build max heap using bottom-up method.

we assume array entries are indexed 1 to N

array in arbitrary order
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

<table>
<thead>
<tr>
<th>A</th>
<th>E</th>
<th>E</th>
<th>L</th>
<th>M</th>
<th>O</th>
<th>P</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Heapsort: heap construction

First pass. Build heap using bottom-up method.

```java
for (int k = N/2; k >= 1; k--)
    sink(a, k, N);
```

![Heap construction diagram]

1. **Starting point (arbitrary order)**
2. **sink(5, 11)**
3. **sink(4, 11)**
4. **sink(1, 11)**
5. **Result (heap-ordered)**

![Sink operations]

- sink(3, 11)
- sink(2, 11)
- sink(1, 11)

sink operations sort the heap down.
Heapsort: sortdown

Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```c
while (N > 1)
{
    exch(a, 1, N--);
    sink(a, 1, N);
}
```
Heapsort: Java implementation

```java
public class Heap {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int k = N/2; k >= 1; k--)
            sink(a, k, N);
        while (N > 1) {
            exch(a, 1, N);
            sink(a, 1, --N);
        }
    }

    private static void sink(Comparable[] a, int k, int N) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}
```

but make static (and pass arguments)

```java
private static void sink(Comparable[] a, int k, int N) {
    /* as before */
}
```

but convert from 1-based indexing to 0-base indexing

```java
private static boolean less(Comparable[] a, int i, int j) {
    /* as before */
}
```
Heapsort: trace

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>a[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>initial values</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>heap-ordered</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>sorted result</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

Heapsort trace (array contents just after each sink)
Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2N$ compares and $\leq N$ exchanges.

Pf sketch. [assume $N = 2^{h+1} - 1$]

$$h + 2(h - 1) + 4(h - 2) + 8(h - 3) + \ldots + 2^h(0) \leq 2^{h+1} - 1 = N$$
Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2N$ compares and $\leq N$ exchanges.

Proposition. Heapsort uses $\leq 2N \lg N$ compares and exchanges.

Algorithm can be improved to $\sim N \lg N$ (but no such variant is known to be practical).

Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space.
- Quicksort: no, quadratic time in worst case.
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, **but**:

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

Can be improved using advanced caching tricks.
Introsort

Goal. As fast as quicksort in practice; \(N \log N \) worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds \(2 \log N \).
- Cutoff to insertion sort for \(N = 16 \).

In the wild. C++ STL, Microsoft .NET Framework.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔️</td>
<td></td>
<td>(\frac{1}{2} N^2)</td>
<td>(\frac{1}{2} N^2)</td>
<td>(\frac{1}{2} N^2)</td>
<td>(N) exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔️ ✔️</td>
<td></td>
<td>(N)</td>
<td>(\frac{1}{4} N^2)</td>
<td>(\frac{1}{2} N^2)</td>
<td>use for small (N) or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔️</td>
<td></td>
<td>(\frac{1}{2} N \log_3 N)</td>
<td>(\frac{1}{2} N \log_3 N)</td>
<td>(\frac{1}{2} N \log_3 N)</td>
<td>tight code; subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔️</td>
<td>✔️</td>
<td>(\frac{1}{2} N \log N)</td>
<td>(N \log N)</td>
<td>(N \log N)</td>
<td>(N) log (N) guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔️</td>
<td>✔️</td>
<td>(N)</td>
<td>(N \log N)</td>
<td>(N \log N)</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔️</td>
<td></td>
<td>(N \log N)</td>
<td>(2 N \ln N)</td>
<td>(\frac{1}{2} N^2)</td>
<td>(N) log (N) probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔️</td>
<td></td>
<td>(N)</td>
<td>(2 N \ln N)</td>
<td>(\frac{1}{2} N^2)</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔️</td>
<td>✔️</td>
<td>(N)</td>
<td>(2 N \log N)</td>
<td>(2 N \log N)</td>
<td>(N) log (N) guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔️ ✔️</td>
<td>✔️</td>
<td>(N)</td>
<td>(N \log N)</td>
<td>(N \log N)</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heap sort
- event-driven simulation
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard disc model.
- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.
- Einstein: explain Brownian motion of pollen grains.
Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

```java
public class BouncingBalls {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while(true)
            {
                StdDraw.clear();
                for (int i = 0; i < N; i++)
                    {
                        balls[i].move(0.5);
                        balls[i].draw();
                    }
                StdDraw.show(50);
            }
    }
}
```

% java BouncingBalls 100
Warmup: bouncing balls

public class Ball
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 public Ball(...) {
 /* initialize position and velocity */
 }

 public void move(double dt) {
 if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
 if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
 rx = rx + vx*dt;
 ry = ry + vy*dt;
 }

 public void draw() {
 StdDraw.filledCircle(rx, ry, radius);
 }
}

Missing. Check for balls colliding with each other.
- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
Time-driven simulation

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.
Main drawbacks.

- $\sim N^2/2$ overlap checks per time quantum.
- Simulation is too slow if dt is very small.
- May miss collisions if dt is too large.
 (if colliding particles fail to overlap when we are looking)
Event-driven simulation

Change state only when something happens.
- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.
Particle-wall collision

Collision prediction and resolution.

- Particle of radius s at position (rx, ry).
- Particle moving in unit box with velocity (vx, vy).
- Will it collide with a vertical wall? If so, when?

Prediction (at time t)

$dt = \text{time to hit wall}$

$= \text{distance/velocity}$

$= (1 - s - rx)/vx$

Resolution (at time $t + dt$)

velocity after collision $= (-vx, vy)$

position after collision $= (1 - s, ry + vy dt)$

Predicting and resolving a particle-wall collision
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?

\[
\Delta t = \begin{cases}
\infty & \text{if } \Delta v \cdot \Delta r \geq 0, \\
\infty & \text{if } d < 0, \\
- \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise}
\end{cases}
\]

\[
d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) (\Delta r \cdot \Delta r - s^2), \quad s = s_i + s_j
\]

\[
\Delta v = (\Delta vx, \Delta vy) = (vx_i - vx_j, vy_i - vy_j) \quad \Delta v \cdot \Delta v = (\Delta vx)^2 + (\Delta vy)^2
\]

\[
\Delta r = (\Delta rx, \Delta ry) = (rx_i - rx_j, ry_i - ry_j) \quad \Delta r \cdot \Delta r = (\Delta rx)^2 + (\Delta ry)^2
\]

\[
\Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry)
\]

Important note: This is physics, so we won’t be testing you on it!
Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

\[
\begin{align*}
 v_{x_i}' &= v_{x_i} + J_x / m_i \\
 v_{y_i}' &= v_{y_i} + J_y / m_i \\
 v_{x_j}' &= v_{x_j} - J_x / m_j \\
 v_{y_j}' &= v_{y_j} - J_y / m_j
\end{align*}
\]

Newton's second law

\[
J_x = \frac{J \Delta r_x}{s}, \quad J_y = \frac{J \Delta r_y}{s}, \quad J = \frac{2 m_i m_j (\Delta v \cdot \Delta r)}{s (m_i + m_j)}
\]

Impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!
public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }
}
Particle-particle collision and resolution implementation

```java
public double timeToHit(Particle that) {
    if (this == that) return INFINITY;
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if (dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double s = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - s*s);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
}

public void bounceOff(Particle that) {
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    double s = this.radius + that.radius;
    double J = 2 * this.mass * that.mass * dvdr / (s * (this.mass + that.mass));
    double Jx = J * dx / s;
    double Jy = J * dy / s;
    this.vx += Jx / this.mass;
    this.vy += Jy / this.mass;
    that.vx -= Jx / that.mass;
    that.vy -= Jy / that.mass;
    this.count++;
    that.count++;
    // Important note: This is physics, so we won’t be testing you on it!
```
Collision system: event-driven simulation main loop

Initialization.

- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

"potential" since collision may not happen if some other collision intervenes

Main loop.

- Delete the impending event from PQ (min priority = t).
- If the event has been invalidated, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.
Event data type

Conventions.
- Neither particle null ⇒ particle-particle collision.
- One particle null ⇒ particle-wall collision.
- Both particles null ⇒ redraw event.

```java
private class Event implements Comparable<Event>
{
    private double time;       // time of event
    private Particle a, b;     // particles involved in event
    private int countA, countB; // collision counts for a and b

    public Event(double t, Particle a, Particle b) { ... }
    public int compareTo(Event that)
    { return this.time - that.time; }
    public boolean isValid() { ... }
}
```
Collision system implementation: skeleton

```java
class CollisionSystem {
    private MinPQ<Event> pq; // the priority queue
    private double t = 0.0; // simulation clock time
    private Particle[] particles; // the array of particles

    public CollisionSystem(Particle[] particles) { }

    private void predict(Particle a) {
        if (a == null) return;
        for (int i = 0; i < N; i++)
            double dt = a.timeToHit(particles[i]);
            pq.insert(new Event(t + dt, a, particles[i]));
        pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
        pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
    }

    private void redraw() { }

    public void simulate() { /* see next slide */ }
}
```

- Add to PQ all particle-wall and particle-particle collisions involving this particle.
Collision system implementation: main event-driven simulation loop

```java
public void simulate()
{
    pq = new MinPQ<Event>();
    for(int i = 0; i < N; i++) predict(particles[i]);
    pq.insert(new Event(0, null, null));

    while(!pq.isEmpty())
    {
        Event event = pq.delMin();
        if(!event.isValid()) continue;
        Particle a = event.a;
        Particle b = event.b;

        for(int i = 0; i < N; i++)
        {
            particles[i].move(event.time - t);
            t = event.time;
        }

        if (a != null && b != null) a.bounceOff(b);
        else if (a != null && b == null) a.bounceOffVerticalWall();
        else if (a == null && b != null) b.bounceOffHorizontalWall();
        else if (a == null && b == null) redraw();

        predict(a);
        predict(b);
    }
}
```
Particle collision simulation: example 1

% java CollisionSystem 100
Particle collision simulation: example 2

% java CollisionSystem < billiards.txt
Particle collision simulation: example 3

% java CollisionSystem < brownian.txt
Particle collision simulation: example 4

% java CollisionSystem < diffusion.txt