Performance Improvement Revisited

Goals of this Lecture

- Help you learn how to:
 - Improve program performance by exploiting knowledge of underlying system
 - Compiler capabilities
 - Hardware architecture
 - Program execution
- And thereby:
 - Help you to write efficient programs
 - Review material from the second half of the course

Improving Program Performance

- Most programs are already “fast enough”
 - No need to optimize performance at all
 - Save your time, and keep the program simple/readable
- Most parts of a program are already “fast enough”
 - Usually only a small part makes the program run slowly
 - Optimize only this portion of the program, as needed
- Steps to improve execution (time) efficiency
 - Do timing studies (e.g., gprof)
 - Identify hot spots
 - Optimize that part of the program
 - Repeat as needed

Ways to Optimize Performance

- Better data structures and algorithms
 - Improves the “asymptotic complexity”
 - Better scaling of computation/storage as input grows
 - E.g., going from $O(n^2)$ sorting algorithm to $O(n \log n)$
 - Clearly important if large inputs are expected
 - Requires understanding data structures and algorithms
- Better source code the compiler can optimize
 - Improves the “constant factors”
 - Faster computation during each iteration of a loop
 - E.g., going from $1000n$ to $10n$ running time
 - Clearly important if a portion of code is running slowly
 - Requires understanding hardware, compiler, execution
Helping the Compiler Do Its Job

Limitations of Optimizing Compilers

- Fundamental constraint
 - Compiler must not change program behavior
 - Even under rare pathological inputs
- Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles
 - Data ranges more limited than variable types suggest
 - Array elements remain unchanged by function calls
- Most analysis is performed only within functions
 - Whole-program analysis is too expensive in most cases
- Most analysis is based only on static information
 - Compiler has difficulty anticipating run-time inputs

Avoiding Repeated Computation

- A good compiler recognizes simple optimizations
 - Avoiding redundant computations in simple loops
 - Still, programmer may still want to make it explicit
- Example
 - Repetition of computation: $n \times i$

```
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    a[n*i + j] = b[j];
```

Worrying About Side Effects

- Is this transformation okay?

```
int func1(int x) {
  return f(x) + f(x) + f(x) + f(x);
}
```

- Not necessarily, if

```
int func1(int x) {
  return 4 * f(x);
}
```

And this function may be defined in another file known only at link time

- Compiler cannot always avoid repeated computation
 - May not know if the code has a “side effect”
 - … that makes the transformation change the code’s behavior
Memory Aliasing

- Memory aliasing
 - Single data location accessed through multiple names
 - E.g., two pointers that point to the same memory location
- Modifying the data using one name
 - Implicitly modifies the values seen through other names
- Blocks optimization by the compiler
 - The compiler cannot tell when aliasing may occur
 - … and so must forgo optimizing the code
- Programmer often does know
 - And can optimize the code accordingly

Aliasing Example

- Is this optimization okay?

```c
int *x, *y;
*x = 5;
*y = 10;
printf("x=10\n", *x);

printf("x=5\n");
```

- Not necessarily
 - If y and x point to the same location in memory…
 - … the correct output is “x = 10\n”

Summary: Helping the Compiler

- Compiler can perform many optimizations
 - Register allocation
 - Code selection and ordering
 - Eliminating minor inefficiencies
- But often the compiler needs your help
 - Knowing if code is free of side effects
 - Knowing if memory aliasing will not happen
- Modifying the code can lead to better performance
 - Profile the code to identify the “hot spots”
 - Look at the assembly language the compiler produces
 - Rewrite the code to get the compiler to do the right thing

Exploiting the Hardware
Underlying Hardware

• Implements a collection of instructions
 • Instruction set varies from one architecture to another
 • Some instructions may be faster than others

• Registers and caches are faster than main memory
 • Number of registers and sizes of caches vary
 • Exploiting both spatial and temporal locality

• Exploits opportunities for parallelism
 • Pipelining: decoding one instruction while running another
 • Benefits from code that runs in a sequence
 • Superscalar: perform multiple operations per clock cycle
 • Benefits from operations that can run independently
 • Speculative execution: performing instructions before knowing they will be reached (e.g., without knowing outcome of a branch)

Addition Faster Than Multiplication

• Adding instead of multiplying
 • Addition is faster than multiplication

• Recognize sequences in products
 • Replace multiplication with repeated addition

```java
for (i = 0; i < n; i++) {
    int ni = n * i;
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
}
```

Bit Operations Faster Than Arithmetic

• Use shifts to multiply/divide by powers of 2
 • “x >> 3” is faster than “x / 8”
 • “x << 3” is faster than “x * 8”

```java
for (i = 0; i < n; i++) {
    int ni = n * i;
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
    ni = ni << 2;
}
```

• Bit masking is faster than mod operation
 • “x & 15” is faster than “x % 16”

```java
for (i = 0; i < n; i++) {
    int ni = n * i;
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
    ni = ni & 15;
}
```

Caching: Matrix Multiplication

• Caches
 • Slower than registers, but faster than main memory
 • Both instruction caches and data caches

• Locality
 • Temporal locality: recently-referenced items are likely to be referenced in near future
 • Spatial locality: Items with nearby addresses tend to be referenced close together in time

• Matrix multiplication
 • Multiply n-by-n matrices A and B, and store in matrix C
 • Performance heavily depends on effective use of caches
Matrix Multiply: Cache Effects

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        for (k=0; k<n; k++)
            c[i][j] += a[i][k] * b[k][j];
    }
}
```

• Reasonable cache effects
 • Good spatial locality for A
 • Poor spatial locality for B
 • Good temporal locality for C

• Rather poor cache effects
 • Bad spatial locality for A
 • Good temporal locality for B
 • Bad spatial locality for C

Parallelism: Loop Unrolling

• What limits the performance?
 - Limited apparent parallelism
 • One main operation per iteration (plus book-keeping)
 • Not enough work to keep multiple functional units busy
 • Disruption of instruction pipeline from frequent branches

• Solution: unroll the loop
 • Perform multiple operations on each iteration
Understanding Program Execution

Avoiding Function Calls

- Function calls are expensive
 - Caller saves registers and pushes arguments on stack
 - Callee saves registers and pushes local variables on stack
 - Call and return disrupt the sequence flow of the code

- Function inlining:

```c
void g(void) {
    /* Some code */
}
void f(void) {
    g();
}
```

Some compilers support “inline” keyword directive.

Writing Your Own Malloc and Free

- Dynamic memory management
 - `malloc()` to allocate blocks of memory
 - `free()` to free blocks of memory

- Existing `malloc()` and `free()` implementations
 - Designed to handle a wide range of request sizes
 - Good most of the time, but rarely the best for all workloads

- Designing your own dynamic memory management
 - Forgo using traditional `malloc()` and `free()`, and write your own
 - E.g., if you know all blocks will be the same size
 - E.g., if you know blocks will usually be freed in the order allocated
 - E.g., <insert your known special property here>

Conclusion

- Work smarter, not harder
 - No need to optimize a program that is “fast enough”
 - Optimize only when, and where, necessary

- Speeding up a program
 - Better data structures and algorithms: better asymptotic behavior
 - Optimized code: smaller constants

- Techniques for speeding up a program
 - Coax the compiler
 - Exploit capabilities of the hardware
 - Capitalize on knowledge of program execution