Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, …)
 - Characters (‘a’, ‘z’, …)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic

Base 10 and Base 2

- Decimal (base 10)
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0\)
- Binary (base 2)
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 22\)

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders
12 / 2 = 6 \(R = 0\)
6 / 2 = 3 \(R = 0\)
3 / 2 = 1 \(R = 1\)
1 / 2 = 0 \(R = 1\)
Result = 1100

Writing Bits is Tedious for People

- Octal (base 8)
 - Digits 0, 1, …, 7
- Hexadecimal (base 16)
 - Digits 0, 1, …, 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>0000</th>
<th>1000 = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>1001 = 9</td>
</tr>
<tr>
<td>0010</td>
<td>1010 = A</td>
</tr>
<tr>
<td>0011</td>
<td>1011 = B</td>
</tr>
<tr>
<td>0100</td>
<td>1100 = C</td>
</tr>
<tr>
<td>0101</td>
<td>1101 = D</td>
</tr>
<tr>
<td>0110</td>
<td>1110 = E</td>
</tr>
<tr>
<td>0111</td>
<td>1111 = F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number
1011 0010 1010 1001
converted to hex is
B2A9
Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue

- Strength
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color

- In HTML, e.g. course "Schedule" Web page
 - Red: `De-Comment Assignment Due`
 - Blue: `Reading Period`

- Same thing in digital cameras
 - Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)

- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n

- Examples of unsigned integers
 - 00000001 \rightarrow 1
 - 00001111 \rightarrow 15
 - 00100000 \rightarrow 16
 - 00100001 \rightarrow 33
 - 11111111 \rightarrow 255

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 1 2 6 8 + 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>Sum 4 6 2 0 Sum 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>Carry 0 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR ("exclusive OR")

<table>
<thead>
<tr>
<th>0100 0101 + 0110 0111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110 1100</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>172</td>
</tr>
</tbody>
</table>
Modulo Arithmetic

• Consider only numbers in a range
 • E.g., five-digit car odometer: 0, 1, ..., 99999
 • E.g., eight-bit numbers: 0, 1, ..., 255

• Roll-over when you run out of space
 • E.g., car odometer goes from 99999 to 0, 1, ...
 • E.g., eight-bit number goes from 255 to 0, 1, ...

• Adding \(2^n\) doesn’t change the answer
 • For eight-bit number, \(n=8\) and \(2^8 = 256\)
 • E.g., \((37 + 256) \mod 256\) is simply 37

This can help us do subtraction by changing it to addition...

• Suppose you want to compute \(a - b\)
• Note that this equals \(a + 256 - b\)
• How to compute 256 – \(b\)?

One’s and Two’s Complement

• What’s easy is computing 255 – \(b\) (in 8 bits)
 • Because it’s 11111111 – \(b\), so just flip every bit of \(b\)
 • E.g., if \(b\) is 01000101 (i.e., 69 in decimal)
 • 255 – \(b\)
 \[
 \begin{array}{c}
 1111 1111 \quad \text{b} \\
 - 0100 0101 \\
 \hline
 1011 1010 \quad 255 - b = 88
 \end{array}
 \]
 • This is called the one’s complement of \(b\); just flip all the bits of \(b\)

• Two’s complement
 • Add 1 to the one’s complement
 • E.g., 256 – 69 = (255 – 69) + 1
 \[
 1011 1011 + 1011 1010 \rightarrow 1011 1011
 \]

Putting it All Together

• Computing “\(a - b\)”
 • Same as “\(a + 256 - b\)” (in 8-bit representation)
 • Same as “\(a + (255 - b) + 1\)”
 • Same as “\(a + \text{onesComplement}(b) + 1\)”
 • Example: 172 – 69
 • The original number 69: 0100 0101
 • One’s complement of 69: 1011 1011
 • Two’s complement of 69: 1011 1010
 • Add to the number 172: 1010 1100
 • The sum comes to: 0110 0111
 • Equals: 103 in decimal

Signed Integers

How to represent negative as well as positive numbers

• Sign-magnitude representation
 • Use one bit to store the sign, (n-1) for magnitude
 • Sign bit is 0 for positive number, 1 for negative number
 • Examples
 • E.g., 0010 1100 \(\rightarrow 44\)
 • E.g., 1010 1100 \(\rightarrow -44\)
 • Hard to do arithmetic this way, so rarely used

• Complement representation
 • One’s complement
 • Flip every bit: E.g., 1101 0011 \(\rightarrow -44\)
 • Two’s complement
 • Flip every bit, then add 1: E.g., 1101 0100 \(\rightarrow -44\)
Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?
- Unsigned integers
 - All arithmetic is "modulo" arithmetic
 - Sum would just wrap around
 - End up with sum modulo 2^n
- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: $10000 + 20000 + 30000$
 - Result: -5536

Bitwise Operators: AND and OR

- Bitwise AND ($\&$)
 - $\begin{array}{c|c|c}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
 \end{array}$
- Bitwise OR ($|$)
 - $\begin{array}{c|c|c}
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
 \end{array}$

- Mod on the cheap!
 - E.g., $53 \% 16$
 - ... is same as $53 \& 15$:
 - $53 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
 \end{array}$
 - $15 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & 0 & 0 & 1 & 1 & 1 \\
 \end{array}$
 - $5 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \end{array}$

Bitwise Operators: Not and XOR

- Not or One's complement (~)
 - Turns 0s to 1s, and 1s to 0s
 - E.g., set last three bits to 0
 - $x = x \& \sim 7$;
- XOR ($^\oplus$)
 - 0 if both bits are the same
 - 1 if the two bits are different
 - $\begin{array}{c|c|c}
 0 & 1 \\
 0 & 0 \\
 1 & 1 \\
 \end{array}$

Bitwise Operators: Shift Left/Right

- Shift left ($<<$): Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0
 - $53 \begin{array}{c|c|c|c|c|c|c|c|c}
 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
 \end{array}$
 - $53 << 2 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 \end{array}$
- Shift right ($>>$): Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another!
 - $53 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
 \end{array}$
 - $53 >> 2 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \end{array}$
Example: Counting the 1’s

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

 00111011

 - Four 1 bits

- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- How to look at one bit at a time?
 - Look at the last bit: n & 1
 - Check if it is a 1: (n & 1) == 1, or simply (n & 1)

Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>

int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```

Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, …
 - Pixels, sounds, colors, etc.

- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction

- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic