Shortest Paths

Brief History

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford’s algorithm.

Typeset in Adobe’s PostScript font.

Dijkstra's Algorithm

Assumptions.
- Digraph \(G \).
- Single source \(s \).
- Edge weights \(c(v, w) \) are nonnegative.

Goal. Find shortest path from \(s \) to every other vertex.

Valid weights. For all vertices \(v \), \(\pi(v) \) is length of some path from \(s \) to \(v \).

Edge relaxation.
- Consider edge \(e = v \rightarrow w \).
- If current path from \(s \) to \(v \) plus edge \(v \rightarrow w \) is shorter than current path to \(w \), then update current path to \(w \).

\[
\text{if } (\pi[w] > \pi[v] + e\text{.weight}) \{ \\
\quad \pi[w] = \pi[v] + e\text{.weight}; \\
\quad \text{pred}[w] = v;
\}
\]

Dijkstra's Algorithm

Maintain set of weights \(\pi(v) \) and a set of explored vertices \(S \) for which \(\pi(v) \) is the length shortest \(s - v \) path.
- Initialize: \(S = \{ s \} \), \(\pi(s) = 0 \).
- Repeatedly choose unexplored node \(w \) which minimizes:

\[
\pi(w) = \min_{v \in S} \pi(v) + c(v, w)
\]

- set \(\text{pred}[w] = v \)
- add \(w \) to \(S \), and set \(\pi(w) = \pi(v) + c(v, w) \)
Dijkstra’s Algorithm

Dijkstra’s algorithm. Maintain set of weights $\pi(v)$ and a set of explored vertices S for which $\pi(v)$ is the length of shortest $s-v$ path.

- Initialize: $S = \{s\}$, $\pi(s) = 0$.
- Repeatedly choose unexplored node w which minimizes:
 \[
 \pi(w) = \min_{v \in S} (\pi(v) + c(v,w))
 \]
 - set $\text{pred}[w] = v$
 - add w to S, and set $\pi(w) = \pi(v) + c(v,w)$

Dijkstra’s Algorithm: Proof of Correctness

Invariant. For each vertex v in S, $\pi(v)$ is the length of shortest $s-v$ path.

Pf. (by induction on $|S|$)
- Let w be next vertex added to S.
- $\pi(w) = \pi(v) + c(v,w)$ is length of some $s-v$ path.
- Consider any $s-v$ path P, and let x be first node on path outside S.
- P is already too long as soon as it reaches x by greedy choice.
Dijkstra’s Algorithm: Implementation

Critical step. Choose unexplored node w which minimizes:

$$\pi(w) = \min_{v \in V \setminus S} \pi(v) + c(v, w)$$

Brute force implementation. Test all edges $\Rightarrow O(EV)$ time.

Efficient implementation. Maintain a priority queue of unexplored vertices, prioritized by $\pi(w)$.

Q. How to maintain π?
A. When exploring v, for each edge $v \rightarrow w$ leaving v, update

$$\pi(w) = \min \{ \pi(w), \pi(v) + c(v, w) \}.$$
Dijkstra’s Algorithm: Java Implementation

```java
public Dijkstra(WeightedDigraph G, int s) {
    pi = new double[G.V()];
    pred = new Edge[G.V()];
    for (int v = 0; v < G.V(); v++) pi[v] = INFINITY;

    IndexMinPQ<Double> pq = new IndexMinPQ<Double>(G.V());
    pi[s] = 0.0;
    pq.insert(s, pi[s]);

    while (!pq.isEmpty()) {
        int v = pq.delMin();
        for (Edge e : G.adj(v)) {
            int w = e.target;
            if (pi[w] > pi[v] + e.weight) {
                pi[w] = pi[v] + e.weight;
                pred[w] = e;
                if (pq.contains(w)) pq.decrease(w, pi[w]);
                else pq.insert(w, pi[w]);
            }
        }
    }
}
```

Indexed Priority Queue

Indexed PQ: Array Implementation

- Maintain vertex indexed array `keys[i]`.
- Insert key: change `keys[i]`.
- Decrease key: change `keys[i]`.
- Delete min: scan through `keys[i]` for each item `i`.
- Maintain a boolean array `marked[i]` to mark items in the PQ.

Operation Array Dijkstra

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>1</td>
<td>× V</td>
</tr>
<tr>
<td>delete-min</td>
<td>V</td>
<td>× V</td>
</tr>
<tr>
<td>decrease-key</td>
<td>1</td>
<td>× E</td>
</tr>
<tr>
<td>is-empty</td>
<td>1</td>
<td>× V</td>
</tr>
<tr>
<td>contains</td>
<td>1</td>
<td>× V</td>
</tr>
<tr>
<td>total</td>
<td>V^2</td>
<td></td>
</tr>
</tbody>
</table>

Indexed PQ: Binary Heap Implementation

- Assume items are named 0 to N-1.
- Store priorities in a binary heap.

```
    30
     / 
    23  17
   /   / 
  20   8  0
 /  \
 5 2 30
```

How to decrease key of item `i`? Bubble it up.

How to know which heap node to bubble up? Maintains an extra array `qp[i]` that stores the heap index of item `i`.

Indexed PQ

- Assume items are named 0 to N-1.
- Insert, delete min, test if empty.
- Decrease key, contains.

[ST-like ops]
Dijkstra’s Algorithm: Priority Queue Choice

The choice of priority queue matters in Dijkstra’s implementation.
- Array: \(\Theta(V^2)\).
- Binary heap: \(O(E \log V)\).
- Fibonacci heap: \(O(E + V \log V)\).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array</th>
<th>Binary heap</th>
<th>Fib heap</th>
<th>Dijkstra</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>(V)</td>
<td>(\log V)</td>
<td>(1^+)</td>
<td>(\times V)</td>
</tr>
<tr>
<td>delete-min</td>
<td>(V)</td>
<td>(\log V)</td>
<td>(\log V^+)</td>
<td>(\times V)</td>
</tr>
<tr>
<td>decrease-key</td>
<td>(V)</td>
<td>(\log V)</td>
<td>(1^+)</td>
<td>(\times E)</td>
</tr>
<tr>
<td>is-empty</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(\times V)</td>
</tr>
<tr>
<td>contains</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(\times V)</td>
</tr>
<tr>
<td>total</td>
<td>(V^2)</td>
<td>(E \log V)</td>
<td>(E + V \log V)</td>
<td></td>
</tr>
</tbody>
</table>

† amortized

Best choice depends on sparsity of graph.
- 2,000 vertices, 1 million edges. **Heap**: 2-3x slower.
- 100,000 vertices, 1 million edges. **Heap**: 500x faster.
- 1 million vertices, 2 million edges. **Heap**: 10,000x faster.

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap far better for sparse graphs.
- Fibonacci heap best in theory, but not in practice.
Priority First Search

Priority first search. Maintain a set of explored vertices S, and grow S by exploring edges with exactly one endpoint leaving S.

DFS. Edge from vertex which was discovered most recently.
BFS. Edge from vertex which was discovered least recently.
Prim. Edge of minimum weight.
Dijkstra. Edge to vertex which is closest to s.

Bellman-Ford-Moore

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind: its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

Application: Currency Conversion

Currency conversion. Given currencies and exchange rates, what is best way to convert one ounce of gold to US dollars?

- 1 oz. gold \Rightarrow $327.25.$
- 1 oz. gold £208.10 \Rightarrow $327.00.$
- 1 oz. gold 455.2 Francs \Rightarrow 304.39 Euros \Rightarrow $327.28.$

<table>
<thead>
<tr>
<th>Currency</th>
<th>£</th>
<th>Euro</th>
<th>¥</th>
<th>Franc</th>
<th>$</th>
<th>Gold</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Pound</td>
<td>1.0000</td>
<td>0.6853</td>
<td>0.005290</td>
<td>0.4569</td>
<td>0.6368</td>
<td>208.100</td>
</tr>
<tr>
<td>Euro</td>
<td>1.4599</td>
<td>1.0000</td>
<td>0.007721</td>
<td>0.6677</td>
<td>0.9303</td>
<td>304.028</td>
</tr>
<tr>
<td>Japanese Yen</td>
<td>189.050</td>
<td>129.520</td>
<td>1.0000</td>
<td>85.4694</td>
<td>120.400</td>
<td>39346.7</td>
</tr>
<tr>
<td>Swiss Franc</td>
<td>2.1904</td>
<td>1.4978</td>
<td>0.011574</td>
<td>1.0000</td>
<td>1.3929</td>
<td>455.200</td>
</tr>
<tr>
<td>US Dollar</td>
<td>1.5714</td>
<td>1.0752</td>
<td>0.008309</td>
<td>0.7182</td>
<td>1.0000</td>
<td>327.250</td>
</tr>
<tr>
<td>Gold (oz.)</td>
<td>0.004816</td>
<td>0.003295</td>
<td>0.0000255</td>
<td>0.002201</td>
<td>0.003065</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Application: Currency Conversion

Graph formulation.
- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find path that maximizes product of weights.

$$\begin{array}{c|c|c|c}
\text{Vertex} & \text{Currency} & \text{Weight} \\
\hline
1 & 2.1904 & 0.003065 \\
2 & 0.6677 & 0.7182 \\
3 & 1.0752 & 208.100 \\
4 & 455.2 & 2.1904 \\
5 & 0.6677 & 0.7182 \\
6 & 1.0752 & 208.100 \\
7 & 129.520 & 0.003065 \\
8 & 29 & 0.003065 \\
\end{array}$$

Application: Currency Conversion

Reduction to shortest path problem.
- Let $\gamma(v, w)$ be exchange rate from currency v to w.
- Let $c(v, w) = -\log \gamma(v, w)$.
- Shortest path with costs c corresponds to best exchange sequence.

Challenge. Solve shortest path problem with negative weights.

Shortest Paths with Negative Weights: Failed Attempts

Dijkstra. Can fail if negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is 0!1!2!3.

Re-weighting. Adding a constant to every edge weight can fail.

Adding 9 to each edge changes the shortest path.

Shortest Paths: Negative Cost Cycles

Negative cycle. Directed cycle whose sum of edge weights is negative.

Observation. If negative cycle C on path from s to t, then shortest path can be made arbitrarily negative by spinning around cycle; otherwise, there exists a shortest s–t path that is simple.
Dynamic Programming

Dynamic programming algorithm.
- Initialize $\pi[v] = \infty$, $\pi[s] = 0$.
- Repeat V times: relax each edge e.

```
for (int i = 1; i <= V; i++) {
    for (int v = 0; v < G.V(); v++) {
        for (Edge e : G.adj(v)) {
            int w = e.target;
            if (\pi[w] > \pi[v] + e.weight) {
                \pi[w] = \pi[v] + e.weight;
                pred[w] = v;
            }
        }
    }
}
```

Bellman-Ford-Moore

Observation. If $\pi[v]$ doesn’t change during phase i, no need to relax any edge leaving v in phase $i+1$.

FIFO implementation. Maintain queue of vertices whose distance changed. Be careful to keep at most one copy of each vertex on queue.

Running time. Still $\Omega(EV)$ in worst case, but much faster in practice.

Dynamic Programming: Analysis

Running time. $\Theta(EV)$.

Invariant. At end of phase i, $\pi[v] \leq$ length of any path from s to v using at most i edges.

Theorem. Assuming no negative cycles, upon termination $\pi[v]$ is the length of the shortest path from from s to v, and $\text{pred}[v]$ are the shortest paths.

Review: Edge Relaxation

Valid weights. For all vertices v, $\pi(v)$ is length of some path from s to v.

Edge relaxation.
- Consider edge $e = v \rightarrow w$.
- If current path from s to v plus edge $v \rightarrow w$ is better than current path to w, then update current path to w.

```
if (\pi[w] > \pi[v] + e.weight) {
    \pi[w] = \pi[v] + e.weight;
    pred[w] = v;
}
```

Dynamic Programming: Analysis

Running time. $\Theta(EV)$.

Invariant. At end of phase i, $\pi[v] \leq$ length of any path from s to v using at most i edges.

Theorem. Assuming no negative cycles, upon termination $\pi[v]$ is the length of the shortest path from from s to v, and $\text{pred}[v]$ are the shortest paths.
Arbitrage

Is there an arbitrage opportunity in currency graph?

- Ex: $1 \rightarrow 1.3941\text{ Francs} \rightarrow 0.9308\text{ Euros} \rightarrow 0.6677\text{ Francs} < 0$

-0.4793 + 0.5827 - 0.1046 < 0

-0.4793

-lg(0.6677) = 0.5827

-0.1046

Bellman-Ford-Moore Algorithm

Initialize $\pi[v] = \infty$ and $\text{marked}[v] = \text{false}$ for all vertices v.

```java
Queue<Integer> q = new Queue<Integer>();
marked[s] = true;
\pi[s] = 0;
q.enqueue(s);
while (!q.isEmpty(v)) {
    int v = q.dequeue();
    for (Edge e : G.adj(v)) {
        \text{int } w = e.target;
        if (\pi[w] > \pi[v] + e.weight) {
            \pi[w] = \pi[v] + e.weight;
            pred[w] = v;
            \text{if (!marked[w])} {
                \text{marked[w] = true;
                q.enqueue(w);
            }
        }
    }
}
```

Single Source Shortest Paths Implementation: Cost Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst Case</th>
<th>Best Case</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijkstra (classic)</td>
<td>V^2</td>
<td>V^2</td>
<td>E</td>
</tr>
<tr>
<td>Dijkstra (heap)</td>
<td>$E \log V$</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Dynamic programming</td>
<td>$E V$</td>
<td>$E V$</td>
<td>E</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>$E V$</td>
<td>$E V$</td>
<td>E</td>
</tr>
</tbody>
</table>

Remark 1. Negative weights makes the problem harder.
Remark 2. Negative cycles makes the problem intractable.

Arbitrage

If negative cycle reachable from s, Bellman-Ford-Moore gets stuck in infinite loop, updating vertices in a cycle.

Finding a negative cycle. If any vertex v is updated in phase v, there exists a negative cycle, and we can trace back $\text{pred}[v]$ to find it.
Negative Cycle Detection

Goal. Identify a negative cycle (reachable from any vertex).

Solution. Add 0-weight edge from artificial source \(s \) to each vertex \(v \).
Run Bellman-Ford from vertex \(s \).

Shortest Path in a DAG

Shortest/Longest Path in DAG

Shortest path in DAG algorithm.
- Consider vertices \(v \) in topological order:
 - relax each edge \(v \rightarrow w \)

Theorem. Algorithm computes shortest path in linear time (even if negative edge weights).