Reductions

Desiderata

Desiderata. Classify problems according to their computational requirements.

Desiderata'. Suppose we could (couldn’t) solve problem X efficiently. What else could (couldn’t) we solve efficiently?

Reduction

Def. Problem X reduces to problem Y if given a subroutine for Y, can solve X.

- Cost of solving $X = \text{cost of solving } Y + \text{cost of reduction}.$

Ex. $X =$ Euclidean MST, $Y =$ Voronoi.
Reduction

Def. Problem X reduces to problem Y if given a subroutine for Y, can solve X.

- Cost of solving X = cost of solving Y + cost of reduction.

Consequences.
- Classify problems: establish relative difficulty between two problems.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
- Linear number of standard computational steps.
- One call to subroutine for Y.
- Notation: $X \leq_L Y$.

Some familiar examples.
- Median \leq_L sorting.
- Element distinctness \leq_L sorting.
- Closest pair \leq_L Voronoi.
- Euclidean MST \leq_L Voronoi.
- Arbitrage \leq_L Negative cycle detection.
- Linear programming \leq_L Linear programming in std form.

Consequences.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.
Shortest Paths on Graphs and Digraphs

Claim. Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Caveat. Reduction invalid in networks with negative weights (even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs if no negative cycles, but need more sophisticated techniques.

Convex Hull and Sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counter-clockwise order).

Claim. Convex hull linear reduces to sorting.

Pf. Graham scan algorithm.

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.
3-SUM Reduces to 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 that all lie on the same line?

Claim. $3\text{-SUM} \leq_L 3\text{-COLLINEAR}$.

Conjecture. Any algorithm for 3-SUM requires $\Omega(N^3)$ time.

Corollary. Sub-quadratic algorithm for 3-COLLINEAR unlikely.

Claim. $3\text{-SUM} \leq_L 3\text{-COLLINEAR}$.

- 3-SUM instance: x_1, x_2, \ldots, x_N
- 3-COLLINEAR instance: $(x_1, x_1^2), (x_2, x_2^2), \ldots, (x_N, x_N^2)$
3-SUM Reduces to 3-COLLINEAR

Lemma. If a, b, and c are distinct then \(a + b + c = 0 \) if and only if \((a, a^3), (b, b^3), (c, c^3)\) are collinear.

Pf. Three points \((a, a^3), (b, b^3), (c, c^3)\) are collinear iff:

\[
\frac{c^3 - a^3}{c - a} = \frac{b^3 - c^3}{b - c} \iff \frac{a^3 - b^3}{a - b} = \frac{c^3 - a^3}{c - a} \iff c^3 + bc - a^3 - ab = 0 \iff (c-a)(c+a+b) = 0 \iff c = a \text{ or } a+b+c = 0
\]

\(c, b, a \) are collinear if \(c, b, a \) are distinct

not distinct

\begin{align*}
\text{denominators are nonzero if } a, b, c \text{ are distinct}
\end{align*}

\[\text{Lemma.} \quad \text{Given an integer } x \text{ (represented in binary), is } x \text{ prime?}
\]

\[\text{COMPOSITE.} \quad \text{Given an integer } x, \text{ does } x \text{ have a nontrivial factor?}
\]

Claim. \(\text{PRIME} \preceq L \text{ COMPOSITE} \).

```java
public static boolean isPrime(BigInteger x) {
    if (isComposite(x)) return false;
    else return true;
}
```

Primality and Compositeness

Linear Time Reductions

\[\text{Def.} \quad \text{Problem } X \text{ linear reduces to problem } Y \text{ if } X \text{ can be solved with:}
\]

- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.

- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.

\[\text{PRIME} \quad \text{Given an integer } x \text{ (represented in binary), is } x \text{ prime?}
\]

\[\text{COMPOSITE} \quad \text{Given an integer } x, \text{ does } x \text{ have a nontrivial factor?}
\]

Claim. \(\text{COMPOSITE} \preceq L \text{ PRIME} \).

```java
public static boolean isComposite(BigInteger x) {
    if (isPrime(x)) return false;
    else return true;
}
```

Conclusion. \(\text{COMPOSITE} \) and \(\text{PRIME} \) have same complexity.
Caveat.
- System designer specs the interfaces for project.
- One programmer might implement `isComposite()` using `isPrime()`.
- Other programmer might implement `isPrime()` using `isComposite()`.
- Be careful to avoid infinite reduction loops in practice.

```java
public static boolean isComposite(BigInteger x) {
    if (isPrime(x)) return false;
    else return true;
}
```

```java
public static boolean isPrime(BigInteger x) {
    if (isComposite(x)) return false;
    else return true;
}
```

Poly-Time Reduction

Def. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- One call to subroutine for Y.

Notation. $X \preceq_p Y$.

Ex. Assignment problem $\preceq_p LP$.
Ex. 3-SAT \preceq_p 3-COLOR.
Ex. Any linear reduction.

Poly-Time Reductions

Goal. Classify and separate problems according to relative difficulty.
- Those that can be solved in polynomial time.
- Those that (probably) require exponential time.

Establish tractability. If $X \preceq_p Y$ and Y can be solved in poly-time, then X can be solved in poly-time.

Establish intractability. If $Y \preceq_p X$ and Y cannot be solved in poly-time, then X cannot be solved in poly-time.

Transitivity. If $X \preceq_p Y$ and $Y \preceq_p Z$ then $X \preceq_p Z$.
Assignment Problem

Assignment problem. Assign n jobs to n machines to minimize total cost, where $c_{ij} =$ cost of assigning job j to machine i.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>13</td>
<td>11</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>13</td>
<td>12</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

$\text{cost} = 3 \times 10 + 11 + 20 + 9 = 53$

$\text{cost} = 8 + 7 + 20 + 8 + 11 = 44$

Applications. Match jobs to machines, match personnel to tasks, match Princeton students to writing seminars.

Assignment Problem Reduces to Linear Programming

LP formulation. $x_{ij} = 1$ if job j assigned to machine i.

$$\begin{align*}
\text{min} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\text{s. t.} & \sum_{j=1}^{n} x_{ij} = 1 \quad 1 \leq i \leq n \\
& \sum_{i=1}^{n} x_{ij} = 1 \quad 1 \leq j \leq n \\
& x_{ij} \geq 0 \quad 1 \leq i, j \leq n
\end{align*}$$

Theorem. [Birkhoff 1946, von Neumann 1953] All extreme points of the above polytope are (0-1)-valued.

Corollary. Assignment problem reduces to LP; can solve in poly-time.

we assume LP returns an extreme point solution

3-Satisfiability

Literal: A Boolean variable or its negation. x_i or $\overline{x_i}$

Clause. A disjunction of 3 distinct literals. $C_j = x_1 \lor \overline{x_2} \lor x_3$

Conjunctive normal form. A propositional formula Φ that is the conjunction of clauses. $\Phi = C_1 \land C_2 \land C_3 \land C_4$

3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, does it have a satisfying truth assignment?

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$$

Solution: $x_1 =$ true, $x_2 =$ true, $x_3 =$ false, $x_4 =$ true

Key application. Electronic design automation (EDA).

Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

yes instance
Claim. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Pf. Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.

Claim. Graph is 3-colorable iff \(\Phi \) is satisfiable.

Pf. Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
Graph 3-Colorability

Claim. Graph is 3-colorable iff \(\Phi \) is satisfiable.

Pf.
- Suppose graph is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (ii) ensures each literal is T or F.
 - (iii) ensures a literal and its negation are opposites.
 - (iv) ensures at least one literal in each clause is T.

(if not, then G wouldn’t be 3-colorable, a contradiction)

![Graph 3-Colorability Diagram]

Cook’s Theorem

3-SAT

3DM VERTEX COVER

HAM-CYCLE

CLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

INTEGER PROGRAMMING

KNAPSACK

BIN-PACKING

Conjecture: no poly-time algorithm for 3-SAT. (and hence none of these problems)

All of these problems (any many more) polynomial reduce to 3-SAT.
Cook + Karp

Reductions are important in theory to:
- Establish tractability.
- Establish intractability.
- Classify problems according to their computational requirements.

Reductions are important in practice to:
- Design algorithms.
- Design reusable software modules.
 - stack, queue, sorting, priority queue, symbol table, set, graph shortest path, regular expressions, linear programming
- Determine difficulty of your problem and choose the right tool.
 - use exact algorithm for tractable problems
 - use heuristics for intractable problems
 e.g., bin packing