Reductions

Desiderata

Desiderata. Classify problems according to their computational requirements.

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Desiderata’. Suppose we could (couldn’t) solve problem X efficiently. What else could (couldn’t) we solve efficiently?

Reduction

Def. Problem X reduces to problem Y if given a subroutine for Y, can solve X.

- Cost of solving X = cost of solving Y + cost of reduction.
- Ex: X = closest pair, Y = Voronoi.

Consequences.
- Classify problems: establish relative difficulty between two problems.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.

Linear Time Reductions
Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
- Linear number of standard computational steps.
- One call to subroutine for Y.
- Notation: $X \leq_L Y$.

Some familiar examples.
- Dedup \leq_L sorting.
- Median \leq_L sorting.
- Convex hull \leq_L Voronoi.
- Closest pair \leq_L Voronoi.
- Arbitrage \leq_L negative cycle detection.
- Brewer’s problem \leq_L linear programming.

Consequences.
- **Design algorithms:** given algorithm for Y, can also solve X.
- **Establish intractability:** if X is hard, then so is Y.
- **Classify problems:** establish relative difficulty between two problems.

Shortest Paths

Claim. Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Caveat. Reduction invalid in networks with negative weights (even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs if no negative cycles, but need more sophisticated techniques.
Convex Hull and Sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points on the convex hull (in counter-clockwise order).

Claim. Convex hull linear reduces to sorting.

Pf. Graham scan algorithm.

Sorting instance.
Convex hull instance.

Observation. Region \(\{x : x^2 \geq x\} \) is convex \(\Rightarrow \) all points are on hull.

Consequence. Starting at point with most negative x, counter-clockwise order of hull points yields items in ascending order.

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.
3-SUM Reduces to 3-COLLINEAR

Claim. Given N distinct integers, are there 3 that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 points that all lie on the same line?

Claim. 3-SUM \(\leq L \) 3-COLLINEAR.

\textbf{Pf.} 3-SUM instance: \(x_1, x_2, \ldots, x_N \)

3-COLLINEAR instance: \((x_1, x_1^3), (x_2, x_2^3), \ldots, (x_N, x_N^3)\)

we just proved this

3-SUM and 3-COLLINEAR

\textbf{Conjecture.} Any algorithm for 3-SUM requires \(\Omega(N^2) \) time.

Claim. 3-SUM \(\leq L \) 3-COLLINEAR.

\textbf{Corollary.} If no sub-quadratic algorithm for 3-SUM, then no sub-quadratic algorithm for 3-COLLINEAR.
Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- **Classify problems:** establish relative difficulty between two problems.

Primality and Compositeness

PRIME. Given an integer x (represented in decimal), is x prime?

COMPOSITE. Given an integer x, does x have a nontrivial factor?

Claim. \(\text{COMPOSITE} \leq_L \text{PRIME} \).

```
public static boolean isPrime(int x) {
    if (isComposite(x)) return false;
    else                return true;
}
```

Reduction Gone Wrong

Caveat.
- System designer specs the interfaces for project.
- One programmer might implement \(\text{isComposite} \) using \(\text{isPrime} \).
- Another programmer might implement \(\text{isPrime} \) using \(\text{isComposite} \).
- Be careful to avoid infinite reduction loops in practice.

```
public static boolean isPrime(int x) {
    if (isComposite(x)) return false;
    else                return true;
}
```

```
public static boolean isComposite(int x) {
    if (isPrime(x)) return false;
    else                return true;
}
```
Poly-Time Reductions

Def. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- One call to subroutine for Y.

Notation. $X \leq_p Y$.

Ex. Assignment problem \leq_p LP.
Ex. 3-SAT \leq_p 3-COLOR.

Goal. Classify and separate problems according to relative difficulty.
- Those that can be solved in polynomial time.
- Those that (probably) require exponential time.

Establish tractability. If $X \leq_p Y$ and Y can be solved in poly-time, then X can be solved in poly-time.

Establish intractability. If $Y \leq_p X$ and Y cannot be solved in poly-time, then X cannot be solved in poly-time.

Useful property. If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$.

Assignment Problem

Assignment problem. Assign n jobs to n machines to minimize total cost, where c_{ij} = cost of assignment job j to machine i.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>7</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>11</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>12</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

$\text{cost} = 3 \times 10 + 11 \times 9 + 10 \times 11 = 53$

Applications. Match jobs to machines, match personnel to tasks, match PU students to writing seminars.
Assignment Problem Reduces to Linear Programming

LP formulation. \(x_{ij} = 1 \) if job \(j \) assigned to machine \(i \).

\[
\min \sum_{i \in \mathcal{M}, j \in \mathcal{J}} c_{ij} x_{ij} \\
\text{s.t.} \\
\sum_{i \in \mathcal{M}} x_{ij} = 1 \quad 1 \leq i \leq n \\
\sum_{j \in \mathcal{J}} x_{ij} = 1 \quad 1 \leq j \leq n \\
x_{ij} \geq 0 \quad 1 \leq i, j \leq n
\]

Theorem. [Birkhoff 1946, von Neumann 1953] All extreme points of the above polyhedron are \((0,1)\)-valued.

Corollary. Assignment problem reduces to LP; can solve in poly-time.

we assume LP returns an extreme point solution

3-Satisfiability

Literal: A Boolean variable or its negation. \(x_i \) or \(\overline{x}_i \)

Clause. A disjunction of 3 distinct literals. \(C_j = x_1 \lor x_2 \lor x_3 \)

Conjunctive normal form. A propositional formula \(\Phi \) that is the conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

Ex. \((\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \)

Yes. \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false} \)

Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?
Graph 3-Colorability

Claim. 3-SAT \(\leq_p\) 3-COLOR.

Pf. Given 3-SAT instance \(\Phi\), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi\) is satisfiable.

Construction.
1. Create one vertex for each literal.
2. Create 3 new vertices T, F, and B; connect them in a triangle, and connect each literal to B.
3. Connect each literal to its negation.
4. For each clause, attach a gadget of 6 vertices and 13 edges.

Graph 3-Colorability

Claim. Graph is 3-colorable iff \(\Phi\) is satisfiable.

Pf. Suppose graph is 3-colorable.
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Graph 3-Colorability

Claim. Graph is 3-colorable iff \(\Phi\) is satisfiable.

Pf. Suppose graph is 3-colorable.
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.
Graph 3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. Suppose 3-SAT formula Φ is satisfiable.
- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

More Poly-Time Reductions

Conjecture: no poly-time algorithm for 3-SAT, (and hence none of these problems)
Summary

Reductions are important in theory to:
 - Classify problems according to their computational requirements.
 - Establish intractability.
 - Establish tractability.

Reductions are important in practice to:
 - Design algorithms.
 - Design reusable software modules.
 - stack, queue, sorting, priority queue, symbol table
 - graph, shortest path, regular expressions, linear programming
 - Determine difficulty of your problem and choose the right tool.
 - use exact algorithm for tractable problems
 - use heuristics for NP-hard problems
 e.g., bin packing