Machine Learning Algorithms for Classification

Rob Schapire
Princeton University

www.cs.princeton.edu/~schapire
Machine Learning

- studies how to automatically learn to make accurate predictions based on past observations

- classification problems:
 - classify examples into given set of categories
Examples of Classification Problems

- text categorization
 - e.g.: spam filtering
 - e.g.: categorize news articles by topic
- fraud detection
- optical character recognition
- natural-language processing
 - e.g.: part-of-speech tagging
 - e.g.: spoken language understanding
- market segmentation
 - e.g.: predict if customer will respond to promotion
 - e.g.: predict if customer will switch to competitor
- medical diagnosis
Why Use Machine Learning?

• **advantages:**
 - often much more **accurate** than human-crafted rules (since data driven)
 - humans often incapable of expressing what they know (e.g., rules of English, or how to recognize letters), but can easily classify examples
 - don’t need a human expert or programmer
 - **flexible** — can apply to any learning task
 - **cheap** — can use in applications requiring **many** classifiers (e.g., one per customer, one per product, one per web page, ...)

• **disadvantages**
 - need a lot of **labeled** data
 - **error prone** — usually impossible to get perfect accuracy
Machine Learning Algorithms

- **this talk:**
 - decision trees
 - boosting
 - support-vector machines
 - neural networks

- **others not covered:**
 - nearest neighbor algorithms
 - Naive Bayes
 - bagging
 - ...
Decision Trees
Example: Good versus Evil

- **Problem**: identify people as good or bad from their appearance

<table>
<thead>
<tr>
<th></th>
<th>sex</th>
<th>mask</th>
<th>cape</th>
<th>tie</th>
<th>ears</th>
<th>smokes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>batman</td>
<td>male</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>Good</td>
</tr>
<tr>
<td>robin</td>
<td>male</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>Good</td>
</tr>
<tr>
<td>alfred</td>
<td>male</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>Good</td>
</tr>
<tr>
<td>penguin</td>
<td>male</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>Bad</td>
</tr>
<tr>
<td>catwoman</td>
<td>female</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>Bad</td>
</tr>
<tr>
<td>joker</td>
<td>male</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>Bad</td>
</tr>
<tr>
<td>batgirl</td>
<td>female</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>??</td>
</tr>
<tr>
<td>riddler</td>
<td>male</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>??</td>
</tr>
</tbody>
</table>

training data

test data
Example (cont.)

- **tie**: No -> Cape, Yes -> Smokes
 - **Cape**: No -> Bad, Yes -> Good
 - **Smokes**: No -> Good, Yes -> Bad
How to Build Decision Trees

- choose rule to split on
- divide data using splitting rule into disjoint subsets
- repeat recursively for each subset
- stop when leaves are (almost) “pure”
Choosing the Splitting Rule

• choose rule that leads to greatest increase in “purity”:
Choosing the Splitting Rule (cont.)

- (im)purity measures:
 - entropy: \(-p_+ \ln p_+ - p_- \ln p_-\)
 - Gini index: \(p_+ p_-\)

where \(p_+ / p_- = \) fraction of positive / negative examples

\[p_+ = 1 - p_- \]
Kinds of Error Rates

- **training error** = fraction of training examples misclassified
- **test error** = fraction of test examples misclassified
- **generalization error** = probability of misclassifying new random example
• trees must be big enough to fit training data (so that “true” patterns are fully captured)

• BUT: trees that are too big may overfit (capture noise or spurious patterns in the data)

• significant problem: can’t tell best tree size from training error
Overfitting Example

- fitting points with a polynomial

underfit
(density = 1)

ideal fit
(density = 3)

overfit
(density = 20)
Building an Accurate Classifier

- for good test performance, need:
 - enough training examples
 - good performance on training set
 - classifier that is not too “complex” (“Occam’s razor”)
 - measure “complexity” by:
 - number bits needed to write down
 - number of parameters
 - VC-dimension
Training data:
Good and Bad Classifiers

Good:
- Sufficient data
- Low training error
- Simple classifier

Bad:
- Insufficient data
- Training error too high
- Classifier too complex
Theory

- can prove:

\[
\text{(generalization error)} \leq \text{(training error)} + \tilde{O}\left(\sqrt{\frac{d}{m}}\right)
\]

with high probability

- \(d = \text{VC-dimension}\)
- \(m = \text{number training examples}\)
Controlling Tree Size

- typical approach: build very large tree that fully fits training data, then prune back

- pruning strategies:
 - grow on just part of training data, then find pruning with minimum error on held out part
 - find pruning that minimizes

\[(\text{training error}) + \text{constant} \cdot (\text{tree size})\]
Decision Trees

- best known:
 - C4.5 (Quinlan)
 - CART (Breiman, Friedman, Olshen & Stone)
- very fast to train and evaluate
- relatively easy to interpret
- but: accuracy often not state-of-the-art
Boosting
Example: Spam Filtering

• **problem**: filter out spam (junk email)

• **gather large collection of examples of spam and non-spam:**
 - From: yoav@att.com Rob, can you review a paper... non-spam
 - From: xa412@hotmail.com Earn money without working!!!! ... spam

• **main observation:**
 - easy to find “rules of thumb” that are “often” correct
 - *If ‘buy now’ occurs in message, then predict ‘spam’*
 - hard to find single rule that is very highly accurate
The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of emails
- obtain rule of thumb
- apply to 2nd subset of emails
- obtain 2nd rule of thumb
- repeat T times
Details

• how to **choose examples** on each round?
 • concentrate on “hardest” examples
 (those most often misclassified by previous rules of thumb)

• how to **combine** rules of thumb into single prediction rule?
 • take (weighted) majority vote of rules of thumb
Boosting

- **boosting** = general method of converting rough rules of thumb into highly accurate prediction rule

- **technically:**
 - assume given “weak” learning algorithm that can consistently find classifiers (“rules of thumb”) at least slightly better than random, say, accuracy \(\geq 55\% \)
 - given sufficient data, a boosting algorithm can **provably** construct single classifier with very high accuracy, say, 99%
AdaBoost

- given training examples \((x_i, y_i)\) where \(y_i \in \{-1, +1\}\)
- initialize \(D_1 = \) uniform distribution on training examples
- for \(t = 1, \ldots, T:\)
 - train \underline{weak classifier} \(h_t\) ("rule of thumb") on \(D_t\)
 - choose \(\alpha_t > 0\)
 - compute new distribution \(D_{t+1}:\)
 - for each example \(i:\)
 - multiply \(D_t(x_i)\) by \(\begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}\)
 - renormalize
- output \underline{final classifier} \(H_{\text{final}}(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)\)
Toy Example

D_1

weak classifiers = vertical or horizontal half-planes
Round 1

\[h_1 \]

\[D_2 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Final Classifier

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]
Theory: Training Error

- **weak learning assumption**: each weak classifier at least slightly better than random
 - i.e., \((\text{error of } h_t \text{ on } D_t) \leq 1/2 - \gamma\) for some \(\gamma > 0\)
- given this assumption, can prove:
 \[
 \text{training error}(H_{\text{final}}) \leq e^{-2\gamma^2T}
 \]
How Will Test Error Behave? (A First Guess)

- **expect:**
 - training error to continue to drop (or reach zero)
 - test error to *increase* when H_{final} becomes “too complex” (overfitting)
Actual Typical Run

- Test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- Test error continues to drop even after training error is zero!

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>
The Margins Explanation

- **key idea:**
 - training error only measures whether classifications are right or wrong
 - should also consider **confidence** of classifications

- recall: H_{final} is weighted majority vote of weak classifiers

- measure confidence by **margin** = strength of the vote

- empirical evidence and mathematical proof that:
 - large margins \Rightarrow better generalization error (regardless of number of rounds)
 - boosting tends to increase margins of training examples (given weak learning assumption)
Boosting

- fast (but not quite as fast as other methods)
- simple and easy to program
- flexible: can combine with any learning algorithm, e.g.
 - C4.5
 - very simple rules of thumb
- provable guarantees
- state-of-the-art accuracy
- tends not to overfit (but occasionally does)
- many applications
Support-Vector Machines
Geometry of SVM’s

• given **linearly separable** data
• **margin** = distance to separating hyperplane
• choose hyperplane that maximizes minimum margin
• intuitively:
 • want to separate +’s from −’s as much as possible
 • margin = measure of confidence
Theoretical Justification

• let $\gamma = \text{minimum margin}$
 $R = \text{radius of enclosing sphere}$

• then

$$\text{VC-dim} \leq \left(\frac{R}{\gamma} \right)^2$$

• so larger margins \Rightarrow lower “complexity”
 • independent of number of dimensions

• in contrast, unconstrained hyperplanes in \mathbb{R}^n have

$$\text{VC-dim} = (\# \text{ parameters}) = n + 1$$
Finding the Maximum Margin Hyperplane

- examples \(x_i, y_i \) where \(y_i \in \{-1, +1\} \)
- find hyperplane \(\mathbf{v} \cdot \mathbf{x} = 0 \) with \(\| \mathbf{v} \| = 1 \)
- margin = \(y(\mathbf{v} \cdot \mathbf{x}) \)
- maximize: \(\gamma \)
 subject to: \(y_i(\mathbf{v} \cdot \mathbf{x}_i) \geq \gamma \) and \(\| \mathbf{v} \| = 1 \)
- set \(\mathbf{w} \leftarrow \mathbf{v} / \gamma \Rightarrow \gamma = 1 / \| \mathbf{w} \| \)
- minimize \(\frac{1}{2} \| \mathbf{w} \|^2 \)
 subject to: \(y_i(\mathbf{w} \cdot \mathbf{x}_i) \geq 1 \)
Convex Dual

- form Lagrangian, set $\frac{\partial}{\partial w} = 0$
- get quadratic program:
 - maximize $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j$
 - subject to: $\alpha_i \geq 0$
- $w = \sum_i \alpha_i y_i x_i$
- $\alpha_i = $ Lagrange multiplier
 - $> 0 \Rightarrow$ support vector
- key points:
 - optimal w is linear combination of support vectors
 - dependence on x_i's only through inner products
 - maximization problem is convex with no local maxima
What If Not Linearly Separable?

- **answer #1**: penalize each point by distance from margin 1, i.e., minimize:

$$\frac{1}{2} \| \mathbf{w} \|^2 + \text{constant} \cdot \sum_i \max\{0, 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i)\}$$

- **answer #2**: map into higher dimensional space in which data becomes linearly separable
• **not** linearly separable

• map $\mathbf{x} = (x_1, x_2) \mapsto \Phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2)$

• hyperplane in mapped space has form

$$a + bx_1 + cx_2 + dx_1x_2 + ex_1^2 + fx_2^2 = 0$$

= conic in original space

• linearly separable in mapped space
Higher Dimensions Don’t (Necessarily) Hurt

- may project to very high dimensional space
- statistically, may not hurt since VC-dimension independent of number of dimensions \(((R/\gamma)^2) \)
- computationally, only need to be able to compute inner products
 \[\Phi(x) \cdot \Phi(z) \]
- sometimes can do very efficiently using kernels
Example (cont.)

- modify Φ slightly:
 \[
 \Phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2)
 \]

- then
 \[
 \Phi(x) \cdot \Phi(z) = 1 + 2x_1z_1 + 2x_2z_2 + 2x_1x_2z_1z_2 + x_1^2z_1^2 + x_2^2 + z_2^2
 = (1 + x_1z_1 + x_2z_2)^2
 = (1 + x \cdot z)^2
 \]

- in general, for polynomial of degree d, use $(1 + x \cdot z)^d$
- very efficient, even though finding hyperplane in $O(n^d)$ dimensions
Kernels

- kernel = function K for computing
 $$K(x, z) = \Phi(x) \cdot \Phi(z)$$

- permits efficient computation of SVM’s in very high dimensions

- K can be any symmetric, positive semi-definite function (Mercer’s theorem)

- some kernels:
 - polynomials
 - Gaussian $exp \left(- \|x - z\|^2 / 2\sigma\right)$
 - defined over structures (trees, strings, sequences, etc.)

- evaluation:
 $$w \cdot \Phi(x) = \sum \alpha_i y_i \Phi(x_i) \cdot \Phi(x) = \sum \alpha_i y_i K(x_i, x)$$

- time depends on # support vectors
SVM’s versus Boosting

- both are large-margin classifiers
 (although with slightly different definitions of margin)
- both work in very high dimensional spaces
 (in boosting, dimensions correspond to weak classifiers)
- but different tricks are used:
 - SVM’s use kernel trick
 - boosting relies on weak learner to select one dimension (i.e., weak classifier) to add to combined classifier
SVM’s

- fast algorithms now available, but not so simple to program (but good packages available)
- state-of-the-art accuracy
- power and flexibility from kernels
- theoretical justification
- many applications
Neural Networks
The Neural Analogy

- perceptron (= linear threshold function) looks a lot like a neuron

- other neurons fire (inputs)
- when electrical potential exceeds threshold, fires (output)

- inputs: $a_1, \ldots, a_n \in \{0, 1\}$
- weights: $w_1, \ldots, w_n \in \mathbb{R}$
- “activation” = \[
\begin{cases}
 1 & \text{if } \sum w_i a_i > \theta \\
 0 & \text{else}
\end{cases}
\]
A Network of Neurons

- idea: put perceptrons in network

- weights on every edge
- each unit = perceptron
- dramatic increase in representation power (not necessarily a good thing for learning)
- great flexibility in choice of architecture
Perceptron Units

- problem: overall network computation is horribly discontinuous because of g

 - optimizing network weights easier when everything continuous
Smoothed Threshold Functions

- **idea**: approximate g with smoothed threshold function

 \[g(x) = \frac{1}{1 + e^{-x}} \]

- e.g., use $g(x) = \frac{1}{1 + e^{-x}}$

- now $h_w(x)$ is continuous and differentiable in both inputs x and weights w
Finding Weights

- given \((x_1, y_1), \ldots, (x_m, y_m)\) where \(y_i \in \{0, 1\}\)
- how to find weights \(w\)?
- want network output \(h_w(x_i)\) “close” to \(y_i\)
- typical measure of closeness:

 “energy” \(E(w) = \sum_i (h_w(x_i) - y_i)^2\)
Minimizing Energy

- E is a continuous and differentiable function of w
- minimize using gradient descent:
 - start with any w
 - repeatedly adjust w by taking tiny steps in direction of steepest descent
- easy to compute gradients
 - turns out to have simple recursive form in which error signal is backpropagated from output to inputs
Implementation Details

- often do gradient descent step based just on single example (and repeat for all examples in training set)
- often slow to converge
 - speed up using techniques like conjugate gradient descent
- can get stuck in local minima or large flat regions
- can overfit
 - use regularization to keep weights from getting too large

\[
E(w) = \sum_i (h_w(x_i) - y_i)^2 + \beta \|w\|^2
\]
Neural Nets

- can be slow to converge
- can be difficult to get right architecture, and difficult to tune parameters
- not state-of-the-art as a general method
- with proper care, can do very well on particular problems, often with specialized architecture
Further reading on machine learning in general:

Decision trees:

Boosting:

Many more papers, tutorials, etc. available at www.boosting.org.

Support-vector machines:

Many more papers, tutorials, etc. available at www.kernel-machines.org.

Neural nets: