Quick Review

Get paper and pencil out.
Not graded just for review.

Questions

Write a derivation tree for
\[\text{pred}(\text{succ}(\text{zero})) \]

Is the rule below derivable, admissible, or neither?
\[\text{eq}(\text{pred}(\text{succ}(\text{X})), \text{X}) \]

Is the rule below derivable, admissible, or neither?
\[\text{succ}(\text{pred}(\text{X})) \]

Is the rule below derivable, admissible, or neither?
\[\text{pred}(\text{succ}(\text{X})) \]
Is the rule below derivable, admissible, or neither?

\[\text{pred}(\text{succ}(X)) \rightarrow \text{pred}(X) \rightarrow \text{int} \]

Prove the following

If \(X \) nat then \(X \) int

(just sketch out the structure)

What is the principle of rule induction look like for the rules above?

Answers

Write a derivation tree for

\[\text{succ} (\text{zero}) \rightarrow \text{int} \]

\[\text{pred} (\text{succ} (\text{zero})) \rightarrow \text{int} \]
Is the rule below derivable, admissible, or neither?
\[
\frac{X: \text{int}}{\text{succ}(X): \text{int}}^R_0
eq (\text{pred}(\text{succ}(X)), X)
\]

The rule below is derivable.
\[
\frac{X: \text{int}}{\text{succ}(X): \text{int}}^R_2
\]

Is the rule below derivable, admissible, or neither?
\[
\frac{X: \text{int}}{\text{pred}(X): \text{int}}^R_0
eq (\text{pred}(\text{succ}(X)), X)
\]

The rule below is admissible.
\[
\frac{X: \text{int}}{\text{succ}(X): \text{int}}^R_1
\]
Is the rule below derivable, admissible, or neither?

\[
\frac{\text{pred}(X) \text{ int}}{\text{pred(succ}(X)) \text{ int}}
\]

The rule below is admissible.

\[
\frac{\text{pred}(X) \text{ int}}{\text{pred(succ}(X)) \text{ int}}
\]

Is the rule below derivable, admissible, or neither?

\[
\frac{\text{succ}(X) \text{ int}}{\text{pred(succ}(X)) \text{ int}}
\]

The rule below is derivable.

\[
\frac{\text{succ}(X) \text{ int}}{\text{pred(succ}(X)) \text{ int}}
\]

Proof Sketch

By induction on \(X \text{ nat} \)

\(\text{IH}(x) = \text{ If } x \text{ nat then } x \text{ int} \)

Subgoal1: \(\text{IH}(\text{zero}) \)

Subgoal2: If \(\text{IH}(X') \text{ then } \text{IH}(\text{succ}(X')) \)

Prove the following

If \(X \text{ nat} \text{ then } X \text{ int} \)

(just sketch out the structure, i.e.)
Rule Induction Principle

If \(X \in \text{int} \),

\begin{align*}
 & P(\text{zero}), \\
 & \text{if } P(X) \text{ then } P(\text{succ}(X)), \text{ and} \\
 & \text{if } P(Y) \text{ then } P(\text{pred}(Y)), \\
 & \text{then } P(X)
\end{align*}

What is the principle of rule induction look like for the rules above?

Did You Ace The Quiz?

- If so great!
- If not go through the notes and the slides from lecture 1
- Still stuck talk to me or the TA
- Did the entire class ace the quiz?
 - Probably not you are not the only one who is confused!

Inductively Defined Functions and Standard ML

COS 441
Princeton University
Fall 2004

Assignment 1

- Handout today due back next Wednesday
- Requires ML programming an a few simple proofs
- Make sure you're all set up to use your CS account and program in ML
- Details and updates available through the course web

Relations Review

- A relation is set of tuples
 - \(\text{Odd} = \{1, 3, 5, \ldots\} \)
 - \(\text{Line} = \{(0,0), (1.5,1.5), (x,x), \ldots\} \)
 - \(\text{Circle} = \{(x,y) \mid x^2 + y^2 = 1.0\} \)
- \(\text{Odd} \) is a predicate on natural numbers
- \(\text{Line}, \text{Circle}, \) and \(\text{Sphere} \) are relations on real numbers
- \(\text{Line} \) is a function
Functions and Their Graphs

- The graph of a function \(f(x) \) is the unique relation \(\{(x,y) \mid f(x) = y\} \)
- We can uniquely specify a function by defining its graph as a relation
- Not all relations specify valid functions!

Some “graphs” of Relations

- Below are some plotted graphs of the relations Circle and Line

![Circle and Line graphs](image)

- For a relation to be a valid graph of a function each unique input has a unique output

Defining the Function add

- We want to define a function \(\text{add}(m,n) \)
- To do this first specify a relation that defines its graph \(A(m,n,p) \) inductively
- Next show that for any unique pair of \(m \) and \(n \) there is a unique \(p \) such that \(A(m,n,p) \)

Defining the Graph of add

\[
\frac{X \text{ nat}}{A(X, \text{zero}, X)} \quad \frac{A(X,Y,Z)}{A(X, \text{succ}(Y), \text{succ}(Z))}
\]

Avoiding Clutter

Alternative definition that is equivalent to our previous one but its more cluttered since we have redundant premises

\[
\frac{X \text{ nat}}{A(X, \text{zero}, X)} \quad \frac{A(X,Y,Z)}{A(X, \text{succ}(Y), \text{succ}(Z))}
\]

Why are the all those extra premises not needed?

Defining the Graph of add

\[
\frac{X \text{ nat}}{A(X, \text{zero}, X)} \quad \frac{A(X,Y,Z)}{A(X, \text{succ}(Y), \text{succ}(Z))}
\]

The definition above immediately entails the following rules

\[
\frac{A(X,Y,Z)}{A(X, \text{succ}(Y), \text{succ}(Z))}
\]

Why?
Defining the Graph of \textbf{add}

\[
\frac{X \text{ nat}}{A(X, \text{zero}, X)} \quad \frac{A(X, Y, Z)}{A(X, \text{succ}(Y), \text{succ}(Z))}
\]

The definition above immediately entails the following rules

\[
\frac{A(X, Y, Z)}{X \text{ nat}} \quad \frac{A(X, Y, Z)}{A(Y, \text{nat}}} \quad \frac{A(X, Y, Z)}{A(Z, \text{nat}}
\]

They can be shown to be admissible with the principle of rule induction for derivations of \(A\) and the rules \(Z\) and \(S\).

Proving \(A\) is a Function Graph

If \(A(X, Y, Z)\), \(X\) unique, and \(Y\) unique then \(Z\) is unique.

\[\text{Proof: } \text{By } \approx\]

Proving \(A\) is a Function Graph

If \(A(X, Y, Z)\), \(X\) unique, and \(Y\) unique then \(Z\) is unique.

\[\text{Proof: } \text{By rule induction for } A(X, Y, Z)\]

Proving \(A\) is a Function Graph

If \(A(X, Y, Z)\), \(X\) unique, and \(Y\) unique then \(Z\) is unique.

\[\text{Proof: } \text{By rule induction for } A(X, Y, Z)\]

\[
\begin{align*}
\text{If } A(X', Y, Z) & \text{ then } A(X', \text{succ}(Y), \text{succ}(Z)) \\
\text{then } A(X, Y, Z).
\end{align*}
\]

Proving \(A\) is a Function Graph

If \(A(X, Y, Z)\),

\[
\begin{align*}
\text{case } A-Z: & \text{ If } X' \text{ nat then } \\
& \text{IH}(X', \text{zero}, X'), \\
\text{case } A-S: & \text{ If } \text{IH}(X', Y', Z') \text{ then } \\
& \text{IH}(X', \text{succ}(Y'), \text{succ}(Z')) \\
& \text{then } \text{IH}(X, Y, Z). \\
& \text{IH}(x, y, z) = \approx
\end{align*}
\]
Proving \(A \) is a Function Graph

If \(A(X,Y,Z) \),
 case A-Z: If \(X' \) nat then
 \(\text{IH}(X,\text{zero},X') \),
 case A-S: If \(\text{IH}(X',Y',Z') \) then
 \(\text{IH}(X,\text{succ}(Y'),\text{succ}(Z')) \)
then \(\text{IH}(X,Y,Z) \).
\(\text{IH}(x,y,z) = \) If \(A(x,y,z) \), \(x \) unique, and \(y \) unique then \(z \) is unique.

Proving \(A \) is a Function Graph

case A-Z: If \(X' \) nat then \(\text{IH}(X',\text{zero},X') \).
\(\text{IH}(x,y,z) = \) If \(A(x,y,z) \), \(x \) unique, and \(y \) unique then \(z \) is unique.

Proving \(A \) is a Function Graph

case A-Z: If \(X' \) nat then \(\text{IH}(X',\text{zero},X') \), \(X' \) unique, and \(\text{zero} \) unique then \(X' \) is unique.

1. \(X' \) nat by assumption
2. \(A(X',\text{zero},X') \), \(X' \) unique, and \(\text{zero} \) unique by assumption

Proving \(A \) is a Function Graph

case A-Z: ...

1. \(X' \) nat by assumption
2. \(A(X',\text{zero},X'), X' \) unique, and \(\text{zero} \) unique by assumption
3. \(X' \) unique by (2)
Proving A is a Function Graph

Case A-S: If $IH(X', Y', Z')$ then

$IH(X', \text{succ}(Y'), \text{succ}(Z'))$

$IH(x, y, z) = \text{If } A(x, y, z), x$ unique, and y unique then z is unique.

Proving A is a Function Graph

Case A-S: ... then

If $A(X', \text{succ}(Y'), \text{succ}(Z'))$, X unique, and $\text{succ}(Y')$ unique

then $\text{succ}(Z')$ is unique

1. $IH(X, Y, Z)$ by assumption

$IH(x, y, z) = \text{If } A(x, y, z), x$ unique, and y unique then z is unique.

Proving A is a Function Graph

Case A-S: ... then $\text{succ}(Z')$ is unique

1. $IH(X, Y, Z)$ by assumption

2. $A(X', \text{succ}(Y'), \text{succ}(Z'))$, X unique, and $\text{succ}(Y')$ unique by assumption

3. $A(X', Y', Z')$ by ??

$IH(x, y, z) = \text{If } A(x, y, z), x$ unique, and y unique then z is unique.

Proving A is a Function Graph

Case A-S: ... then $\text{succ}(Z')$ is unique

1. $IH(X, Y, Z)$ by assumption

2. $A(X', \text{succ}(Y'), \text{succ}(Z'))$, X unique, and $\text{succ}(Y')$ unique by assumption

3. $A(X', Y', Z')$ by ??

4. Y' unique

$IH(x, y, z) = \text{If } A(x, y, z), x$ unique, and y unique then z is unique.
Proving A is a Function Graph

case A: ... then $\text{succ}(Z)$ is unique
1. $\text{IH}(X,Y,Z)$ by assumption
2. $A(X',\text{succ}(Y'),\text{succ}(Z'))$, X' unique, and
 $\text{succ}(Y')$ unique by assumption
3. $A(X',Y,Z)$ by (2) and invert-A-S
4. Y unique by ??

$\text{IH}(x,y,z) = \text{If } A(x,y,z), x \text{ unique, and } y \text{ unique then } z \text{ is unique.}$

Proving A is a Function Graph

case A: ... then $\text{succ}(Z)$ is unique
1. $\text{IH}(X,Y,Z)$ by assumption
2. $A(X',\text{succ}(Y'),\text{succ}(Z'))$, X' unique, and
 $\text{succ}(Y')$ unique by assumption
3. $A(X',Y,Z)$ by (2) and invert-A-S
4. Y unique by ??
5. Z unique by ??

$\text{IH}(x,y,z) = \text{If } A(x,y,z), x \text{ unique, and } y \text{ unique then } z \text{ is unique.}$

Proving A is a Function Graph

case A: ... then $\text{succ}(Z)$ is unique
1. $\text{IH}(X,Y,Z)$ by assumption
2. $A(X',\text{succ}(Y'),\text{succ}(Z'))$, X' unique, and
 $\text{succ}(Y')$ unique by assumption
3. $A(X',Y,Z)$ by (2) and invert-A-S
4. Y unique by ??
5. Z unique by ??
6. $\text{succ}(Z)$ unique by ??

$\text{IH}(x,y,z) = \text{If } A(x,y,z), x \text{ unique, and } y \text{ unique then } z \text{ is unique.}$

Some Missing Pieces

$A(X,\text{succ}(Y),\text{succ}(Z))$ invert-A-S

• We need to assume the following
 - zero is unique
 - if $X \text{ nat}$ and X unique then $\text{succ}(X)$ is unique
 - if $X \text{ nat}$ and $\text{succ}(X)$ unique then X is unique
• It is okay to assume ‘obvious’ things just be explicit about what you assume in proofs

A Function as Recursive Equations

• We often use different notations to defined the graph of a functions
 $\text{add}(M,\text{zero}) \equiv M$
 $\text{add}(M,\text{succ}(N)) \equiv \text{succ}(\text{add}(M,N))$
• The equations define a relation implicitly that relation must still be shown to be the graph of a valid function
Example: Fibonacci Function

\[\text{fib}(\text{zero}) \equiv \text{succ}(\text{zero}) \]
\[\text{fib}(\text{succ}(\text{zero})) \equiv \text{succ}(\text{zero}) \]
\[\text{fib}(\text{succ}(\text{succ}(N))) \equiv \text{add}(\text{fib}(\text{succ}(N)), \text{fib}(N)) \]

What are the rules for the relation being implicitly defined by the equations above?

Example: Fibonacci Function

\[\text{F}(\text{zero}, \text{succ}(\text{zero})) \]
\[\text{F}(\text{succ}(\text{zero}), \text{succ}(\text{zero})) \]
\[\text{F}(\text{succ}(\text{succ}(N)), Z) \]
\[\text{F}(\text{succ}(\text{succ}(N)), X) \]
\[\text{F}(\text{succ}(\text{succ}(N)), Y) \]

Does the relation \(F \) define the graph of a function?
Why?

Summary of Definitions

\[\text{zero} \]
\[\text{succ}(X) \]
\[\text{add}(X, Y) \]
\[\text{A}(X, Y, Z) \]
\[\text{A}(X, Z, Y) \]
\[\text{A}(Y, Z, X) \]
Some Derivable Judgments

\[F(\text{succ}(\text{succ}(\text{zero}))), \text{succ}(\text{succ}(\text{zero}))) \]
\[F(\text{succ}(\text{succ}(\text{succ}(\text{zero})))), \text{succ}(\text{succ}(\text{succ}(\text{zero})))) \]
\[F(\text{succ}(\text{succ}(\text{succ}(\text{succ}(\text{zero})))), \text{succ}(\text{succ}(\text{succ}(\text{succ}(\text{zero}))))) \]

From Relations to SML

- Deriving the judgments by hand is tedious!
- We can use SML as a calculator of sorts to directly express the function we defined as an SML function
- To do this first we have to separate our functions from our data

Separating Functions From Data

- The \text{nat} predicate defines an \textit{abstract syntax tree}
 - More about this next lecture
- We can express the remaining relations as recursive equations that define a function
 - We need to verify that the equations do define well defined functions
 - But we've done that already for these two relations in this lecture!

Separating Functions From Data

\[
\begin{align*}
\text{nat} &::= \text{zero} \mid \text{succ}(n) \\
A(X,\text{zero},X) &\quad A(X,\text{succ}(Y),\text{succ}(Z)) \\
\text{F}(\text{zero},\text{succ}(\text{zero})) &\quad \text{F}(\text{succ}(\text{zero}),\text{succ}(\text{zero})) \\
\text{F}(\text{succ}(N),X) &\quad \text{F}(\text{succ}(N),Z) \\
\text{F}(\text{A}(X,Y,Z)) &\quad \text{F}(\text{A}(X,Y,Z)) \\
\text{A}(\text{X},\text{zero},X) &\quad A(X,\text{succ}(Y),\text{succ}(Z)) \\
\text{F}(\text{zero},\text{succ}(\text{zero})) &\quad \text{F}(\text{succ}(\text{zero}),\text{succ}(\text{zero}))
\end{align*}
\]
Separating Functions From Data

- $$\text{nat } n ::= \text{zero } | \text{succ}(n)$$
- $$\text{add}(M, \text{zero}) \equiv M$$
- $$\text{add}(M, \text{succ}(N)) \equiv \text{succ}(\text{add}(M, N))$$
- $$\text{fib}(\text{zero}) \equiv \text{succ}(\text{zero})$$
- $$\text{fib}(\text{succ}(\text{zero})) \equiv \text{succ}(\text{zero})$$
- $$\text{fib}(\text{succ}(\text{succ}(N))) \equiv \text{add}(\text{add}(\text{succ}(N)), \text{fib}(N))$$

From Relations to SML (cont.)

- We can convert the abstract syntax tree into and ML \texttt{datatype} declarations
- The recursive equations we can write down as ML functions
 - What if our recursive equations didn’t actually define a function but we translated it naively anyway?

\begin{verbatim}
datatype nat = zero | succ of nat

fun add(m, zero) = m
| add(m, succ(n)) = succ(add(m, n))

fun fib(zero) = succ(zero)
| fib(succ(zero)) = succ(zero)
| fib(succ(succ(n))) = add(fib(succ(n)),
 fib(n))
\end{verbatim}
Lessons Learned

• We can define functions by inductively specifying a relation that defines it graph
• Recursive equations can be used to specify relations that define functions
 – We must verify that the function is well defined
• Many recursive equations can be turned directly into SML code
 – The reason we use SML in this course

Next Lecture

• Lexical analysis and parsing along with other things you will not learn about in detail from this course
 – We’ll talk about them to understand why they are “uninteresting”
• Abstract Syntax