Dynamic Trees

- Goal: maintain a forest of rooted trees with costs on vertices.
 - Each tree has a root, every edge directed towards the root.
- Operations allowed:
 - link(v, u): creates an edge between v (a root) and u.
 - cut(v, u): deletes edge (v, u).
 - findcost(v): returns the cost of vertex v.
 - findroot(v): returns the root of the tree containing v.
 - findmin(v): returns the vertex u of minimum cost in the path from v to the root (if there is a tie, choose the closest to the root).
 - addcost(v, x): adds x to the cost of all vertices from v to root.

Dynamic Trees

An example (two trees):

Dynamic Trees

- link(q, e)

Dynamic Trees

- cut(q)

Dynamic Trees

- findmin(s) = b
- findroot(s) = a
- findcost(s) = 2
- addcost(s, 3)

Obvious Implementation

- A node represents each vertex;
- Each node x points to its parent p(x):
 - cut, split, findroot: constant time.
 - findroot, findmin, addcost: linear time on the size of the path.
- Acceptable if paths are small, but O(n) in the worst case.
- Cleverer data structures achieve O(log n) for all operations.
Simple Paths

- We start with a simpler problem:
 - Maintain set of paths that can be:
 - split: cuts a path in two;
 - concatenate: links endpoints of two paths, creating a new path.
 - Operations allowed:
 - findcost(v): returns the cost of vertex v;
 - addcost(x, y): add x to the cost of vertices in path containing y;
 - findmin(v): returns minimum-cost path containing v.

Simple Paths as Lists

- Natural representation: doubly linked list.
 - Constant time for findcost.
 - Constant time for concatenate and split if endpoints given, linear
time otherwise.
 - Linear time for findmin and addcost.
- Can we do it $O(\log n)$ time?

Simple Paths as Binary Trees

- Alternative representation: balanced binary trees.
 - Leaves vertices in symmetric order.
 - Internal nodes: subpaths between extreme descendants.

Simple Paths: Maintaining Costs

- Keeping costs:
 - First idea: store $\text{cost}(x)$ directly on each vertex;
 - Problem: addcost takes linear time (must update all vertices).

- Better approach: store $\Delta \text{cost}(x)$ instead:
 - Root: $\Delta \text{cost}(x) = \text{cost}(x)$
 - Other nodes: $\Delta \text{cost}(x) = \text{cost}(x) - \text{cost}(p(x))$
Simple Paths: Maintaining Costs

- Costs:
 - addcost: constant time (just add to root)
 - Finding cost(x) is slightly harder: \(O(d(x)) \)

Simple Paths: Finding Minima

- Still have to implement findmin:
 - Storing mincost(x), the minimum cost in subpath with root r.
 - findmin runs in \(O(\log n) \) time, but addcost is linear.
Splaying

- Simpler alternative to balanced binary trees: splaying.
 - Does not guarantee that trees are balanced in the worst case.
 - Guarantee \(O(\log n) \) access in the amortized sense.
 - Makes the data structure much simpler to implement.

- Basic characteristics:
 - Does not require any balancing information;
 - On an access to \(u \):
 - Moves \(u \) to the root;
 - Roughly halves the depth of other nodes in the access path.
 - Based entirely on rotations.
 - Other operations (insert, delete, join, split) use splay.

Dynamic Trees

Splaying

- Three restructuring operations:

 ![Diagram of splaying operations](image)

Dynamic Trees

An Example of Splaying

![Example of splaying](image)

Dynamic Trees

An Example of Splaying

![Example of splaying](image)

Dynamic Trees

An Example of Splaying

![Example of splaying](image)

Dynamic Trees

An Example of Splaying

![Example of splaying](image)
An Example of Splaying

Dynamic Trees

End result:
Amortized Analysis

- Bounds the running time of a sequence of operations.
- Potential function \(\Phi \) maps each configuration to real number.
- Amortized time to execute each operation:
 - \(\psi \): amortized cost of the \(i \)-th operation;
 - \(\Phi \): potential of the data structure (twice the sum of all ranks);
- Total time for \(m \) operations:
 \[
 \sum_{i=1}^{m} \psi_i = \sum_{i=1}^{m} (\Phi_i - \Phi_{i-1}) + \Phi_0 - \Phi_m + \sum_{i=1}^{m} \psi_i.
 \]

Amortized Analysis of Splaying

- Definitions:
 - \(s(x) \): size of node \(x \) (number of descendants, including \(x \));
 - At most \(n \), by definition.
 - \(r(x) \): rank of node \(x \), defined as \(\log s(x) \);
 - At most \(\log n \), by definition.
 - \(\Phi \): potential of the data structure (twice the sum of all ranks).
 - At most \(n \log n \), by definition.
- Access Lemma [ST85]: The amortized time to splay a tree with root \(r \) at a node \(x \) is at most
 \[
 \Theta(r(x)) - r(x) + 1 = O(\log(s(r(x))/s(x))).
 \]

Proof of Access Lemma

- Access Lemma [ST85]: The amortized time to splay a tree with root \(r \) at a node \(x \) is at most
 \[
 \Theta(r(x)) - r(x) + 1 = O(\log(s(r(x))/s(x))).
 \]
 - Proof idea:
 - \(\Theta(x) \): rank of \(x \) after the \(i \)-th splay step;
 - \(\phi \): amortized cost of the \(i \)-th splay step;
 - \(\phi(x) = \Theta(x) - \Theta(x) \) (for the zig step, if any)
 - \(\phi(x) = \Theta(x) - \Theta(x) \) (for any zig-zig and zig-zag steps)
 - Total amortized cost for all \(k \) steps
 \[
 \sum_{i=1}^{k} \phi_i \leq \sum_{i=1}^{k} [\Theta(r(x)) - \Theta(x)] + [\Theta(r(x)) - \Theta(x)] + 1
 \]
 \[
 = \Theta(r(x)) - \Theta(x) + 1.
 \]

Proof of Access Lemma: Splaying Step

- Zig-zig:
 - Claim \(a \leq 4 \): \(r(x) = \Theta(x) \)
 \[
 t + \Phi - \Phi + 4 (\theta(x) - \theta(x))
 \]
 \[
 (\theta(x) - \theta(x)) \leq 4 (\theta(x) - \theta(x))
 \]
 \[
 \leq 4 (\theta(x) - \theta(x)).
 \]
 - Rearranging
 \[
 \log(s(x)/s(x)) - \log(s(x)/s(x)) < -1
 \]
 \[
 \text{TRUE because } s(x)/s(x): \text{ both ratios are smaller than 1, at least one is at most } -1/2.
 \]

Proof of Access Lemma: Splaying Step

- Zig:
 - Claim \(a \leq 6 \): \(r(x) = \Theta(x) \)
 \[
 1 + \Phi - \Phi + 6 (\theta(x) - \theta(x))
 \]
 \[
 (\theta(x) - \theta(x)) \leq 6 (\theta(x) - \theta(x))
 \]
 \[
 \leq 6 (\theta(x) - \theta(x)).
 \]
 - Rearranging
 \[
 \log(s(x)/s(x)) - \log(s(x)/s(x)) \leq -1
 \]
 \[
 \text{TRUE because } s(x)/s(x): \text{ both ratios are smaller than 1, at least one is at most } -1/2.
 \]
Splaying

- **To sum up:**
 - No rotation: \(a = 1 \)
 - Zig: \(a \leq 6 \left(r(z) - r(x) \right) + 1 \)
 - Zig-zig: \(a \leq 6 \left(r(z) - r(x) \right) \)
 - Zig-zag: \(a \leq 4 \left(r(z) - r(x) \right) \)

 - Total amortized time at most \(6 \left(r(z) - r(x) \right) + 1 = O(\log n) \)

- Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.

Dynamic Trees

- We know how to deal with isolated paths.
- How to deal with paths within a tree?

Dynamic Trees

- Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

Dynamic Trees

- Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

Dynamic Trees

- A vertex \(v \) is exposed if:
 - There is a solid path from \(v \) to the root;
 - No solid edge enters \(v \);

- It is unique.
Dynamic Trees

- Solid paths:
 - Represented as binary trees (as seen before).
 - Parent pointer of root is the outgoing dashed edge.
 - Hierarchy of solid binary trees linked by dashed edges: "virtual tree".
- "Isolated path" operations handle the exposed path.
 - The solid path entering the root.
 - Dashed pointers go up, so the solid path does not "know" it has dashed children.
- If a different path is needed:
 - expose(v): make entire path from v to the root solid.

Virtual Tree: An Example

actuel tree

virtual tree

Dynamic Trees

- Example: expose(v)
 - Take all edges in the path to the root, ...

Dynamic Trees

- Example: expose(v)
 - ... make them solid, ...

Dynamic Trees

- Example: expose(v)
 - ... make sure there is no other solid edge incident into the path.
 - Uses splice operation.
Exposing a Vertex

- exposeO: makes the path from x to the root solid.
- Implemented in three steps:
 1. Splay within each solid tree in the path from x to root.
 2. Splay each dashed edge from x to the root.
 - splay makes a dashed become the left solid child
 - if there is an original left solid child, it becomes dashed.
 3. Splay on x, which will become the root.

Dynamic Trees: Splice

- Additional restructuring primitive: splice.

 - Will only occur when w is the root of a tree.
 - Updates:
 - $\Delta \text{cost}(v) = \Delta \text{cost}(u) - \Delta \text{cost}(x)$
 - $\Delta \text{cost}(u) = \Delta \text{cost}(a) + \Delta \text{cost}(x)$
 - $\Delta \min(x) = \max(0, \Delta \min(v) - \Delta \text{cost}(u), \Delta \min(x) - \Delta \text{cost}(x))$

Exposing a Vertex: An Example

Implementing Dynamic Tree Operations

- findcost(v):
 - expose v, return cost(v).

- findroot(v):
 - expose v;
 - find w, the rightmost vertex in the solid subtree containing v;
 - splay at w and return w.

- findmin(v):
 - expose v;
 - use Δcost and $\Delta \min$ to walk down from v to w, the last minimum-cost node in the solid subtree;
 - splay at w and return w.

Exposing a Vertex: Running Time

- Running time of exposeO:
 - proportion to initial depth of x;
 - x is rotated all the way to the root;
 - we just need to count the number of rotations;
 - will actually find amortized number of rotations: $O(\log n)$.
 - proof uses the Access Lemma:
 - $\sigma(x)$, $r(x)$ and potential are defined as before;
 - in particular, $\sigma(x)$ is the size of the whole subtree rooted at x.
 - included both solid and dashed edges.

Exposing a Vertex: Running Time (Proof)

- k: number of dashed edges from x to the root t.
- Amortized costs of each pass:
 1. Splay within each solid tree:
 - s_2 vertex splays in the i-th solid tree.
 - amortized cost of i-th splay: $6(r(x) + x) + i$.
 - $r(x) + x$, as the number of steps in the pass.
 - Amortized cost of pass: $6(r(x) + x) = 6 \log n + k$.
 2. Splay dashed edges:
 - no rotations, no potential changes, amortized cost is zero.
 3. Splay O(n):
 - amortized cost is at most $6 \log n + k$.
 - no changes in cost, no extra rotation happens;
 - each rotation costs one credit, but is charged twice;
 - they pay for the extra rotation in the first pass.
- Amortized number of rotations $= O(\log n)$.
Implementing Dynamic Tree Operations

- addcost(t, x):
 - expose x;
 - add edge (x, p(x));
- link(t, u, w):
 - expose x and w (they are in different trees);
 - set p(x) = w (that is, make v a middle-child of w);
- cut(t, v):
 - expose v;
 - add Δcost(x) to Δcost(right(x));
 - make p(right(v)) = null and right(v) = null.

Dynamic Trees

Extensions and Variants

- Simple extensions:
 - Associate values with edges:
 - just interpret cost(v) as cost(u, p(v)).
 - other path queries (such as length):
 - change values stored in each node and update operations.
 - tree (unrooted) trees:
 - implement cut operation, which changes the root.
- Not-so-simple extension:
 - subtree-related operations:
 - requires that vertices have bounded degree;
 - Approach for arbitrary trees: "unravel" them:
 - [Chirodkar, Grigoriadis and Tarjan, 1991]

Dynamic Trees

Alternative Implementation

- Total time per operation depends on the data structure used to represent paths:
 - Splay trees: O(log n) amortized [ST85].
 - Balanced search tree: O(log n) amortized [ST85].
 - Locally biased search tree: O(log n) amortized [ST85].
 - Globally biased search tree: O(log n) worst-case [ST85].
- Biased search trees:
 - Support leaves with different "weights".
 - Some solid leaves are "heavier" because they also represent subtrees dangling from it from dashed edges.
 - Much more complicated than splay trees.

Dynamic Trees

Other Data Structures

- Some applications require tree-related information:
 - minimum vertex in a tree;
 - add value to all elements in the tree;
 - link and cut as usual.
- ET-Trees can do that:
 - Henzinger and King (1995);
 - Tarjan (1997).

Dynamic Trees

ET-Trees

- Each tree represented by its Euler tour.
 - Edge {u, w}:
 - appears as arcs (u, w) and (w, u);
 - Vertex u:
 - appears once as a self-loop (u, u);
 - used as an "anchor" for new links.
 - stores vertex-related information.
 - Representation is not circular: tour broken at arbitrary place.

Dynamic Trees

ET-Trees

- Consider link(t, u, v):
 - Create elements representing arcs (t, u) and (u, v):
 - Split and concatenate tours appropriately:
 - Original tours:
 - Final tour:
 - The cut operation is similar.
ET-Trees

- Tours as doubly-linked lists:
 - Natural representation.
 - link/cut: $O(1)$ time.
 - addcost/findmin: $O(n)$ time.

- Tours as balanced binary search trees:
 - link/cut: $O(\log n)$ time (binary tree join and split).
 - addcost/findmin: $O(\log n)$ time:
 - values stored in difference form.

Constructions

- **ST-Trees [ST83, ST85]:**
 - first data structure to handle paths within trees efficiently.
 - It is clearly path-oriented:
 - relevant paths explicitly exposed and dealt with.
 - Other approaches are based on constructions:
 - Original tree is progressively contracted until a structure representing only the relevant path (or tree) is left.

Constructions

- Assume we are interested in the path from a to b:

 ![Path Diagram]

 - Using only local information, how can we get closer to the solution?

Constructions

- Consider any vertex v with degree 2 in the tree:

 ![Degree 2 Vertex Diagram]

 - Possibilities if v is neither a nor b:
 - a and b on same "side": v is not in a–b.
 - If a and b on different sides: v belongs to path a–b.

Constructions

- Consider any vertex v with degree 1 in the tree:

 ![Degree 1 Vertex Diagram]

 - If v is neither a nor b, it is clearly not in a–b.
Constructions

- Consider any vertex v with degree 1 in the tree:

- If v is neither a nor b, it is clearly not in $a-b$.
- We can simply eliminate (a, w), reducing the problem size.
 - This is a rake operation.

Path Queries

- Computing the minimum cost from a to b:

Constructions

- A contraction-based algorithm:
 - Work in rounds;
 - In each round, perform some rakes and/or compresses:
 - this will create a new, smaller tree;
 - moves within a round are usually “independent”.
 - Eventually, we will be down to a single element (vertex/edge)
 that represents a path (or the tree).

Path Queries

- Computing the minimum cost from a to b:
Path Queries

- Computing the minimum cost from a to b:

Path Queries

- Computing the minimum cost from a to b:

Path Queries

- Computing the minimum cost from a to b:

Path Queries

- Computing the minimum cost from a to b:

Contractions

- Suppose a definition of independence guarantees that a fraction $1/k$ of all possible takes and compresses will be executed in a round.
 - All degree-1 vertices are rake candidates.
 - All degree-2 vertices are compress candidates.
 - Fact: at least half the vertices in any tree have degree 1 or 2.
 - Result: a fraction $1/2k$ of all vertices will be removed.
 - Total number of rounds is $\lceil \log_{2k} n \rceil = O(\log n)$.

Dynamic Trees
Contraction
- rake and compress proposed by Miller and Reif [1985].
- Original context: parallel algorithms.
- Perform several operations on trees in $O(\log n)$ time.

The Update Problem
- Coming up with a definition of independence that results in a contraction with $O(\log n)$ levels.
- But that is not the problem we need to solve.
- Essentially, we want to repair an existing contraction after a tree operation (link/cut).
- So we are interested in the update problem:
 - Given a contraction C of a forest F, find another contraction C' of a forest F that differs from F in one single edge (inserted or deleted).
 - Fast: $O(\log n)$ time.

Our Problem
- Several data structures deal with this problem.
 - [Frederickson, 85 and 97]: Topology Trees;
 - [Alstrup et al., 97 and 03]: Top Trees;
 - [Acar et al. 03]: RC-Trees.

Top Trees
- Proposed by Alstrup et al. [1997, 2003]
- Handle unrooted (free) trees with arbitrary degrees.
- Key ideas:
 - Associate information with the edges directly.
 - Pair edges up:
 - compress: combines two edges linked by a degree-two vertex;
 - rake: combines leaf with an edge with which it shares an endpoint.
 - All pairs (clusters) must be disjoint.
 - expose: determines which two vertices are relevant to the query (they will not be raked or compressed).

Top Trees
- Consider some free tree.

(level zero: original tree)

Top Trees
- All degree-1 and degree-2 vertices are candidates for a move (rake or compress).

(level zero: original tree)
Top Trees

- When two edges are matched, they create new clusters, which are edge-disjoint.

(level zero: original tree)

Top Trees

- Clusters are new edges in the level above:
 - New rakes and compresses can be performed as before.

(level one)

Top Trees

- The top tree itself represents the hierarchy of clusters:
 - original edge: leaf of the top tree (level zero).
 - two edges/clusters are grouped by rake or compress
 - Resulting cluster is their parent in the level above.
 - edge/cluster unmatched: parent will have only one child.
 - What about values?

Top Trees

- AKS et al. see top tree as an API.
- The top tree engine handles structural operations:
 - User has limited access to it.
 - Engine calls user-defined functions to handle values properly:
 - \texttt{join(A,B,C)}: called when A and B are paired (by rake or compress) to create cluster C
 - \texttt{split(A,B,C)}: called when a rake or compress is undone (and C is split into A and B).
 - \texttt{create(C,e)}: called when base cluster C is created to represent edge e.
 - \texttt{destroy(C)}: called when base cluster C is deleted.

Top Trees

- Example (path operations: \texttt{findmin/addcost})
 - Associate two values with each cluster:
 - \texttt{mincost(C)}: minimum cost in the path represented by C.
 - \texttt{extra(C)}: cost that must be added to all subpaths of C.
 - \texttt{create(C,e)}: (called when base cluster C is created)
 - \texttt{mincost(C)} = cost of edge e.
 - \texttt{extra(C)} = 0
 - \texttt{destroy(C)}: (called when base cluster C is deleted).
 - Do nothing.

Dynamic Trees

Top Trees

- Example (path operations: \texttt{findmin/addvalue})
 - \texttt{join(A,B,C)}: (called when A and B are combined into C)
 - compress: \texttt{mincost(C)} = min(\texttt{mincost(A)}, \texttt{mincost(B)})
 - rake: \texttt{mincost(C)} = \texttt{mincost(B)} (assume A is the leaf)
 - Both cases: \texttt{extra(C)} = 0
 - \texttt{split(A,B,C)}: (called when C is split into A and B)
 - compress: for each child \texttt{X} of \{A,B\}:
 - \texttt{mincost(X)} = \texttt{mincost(X)} + \texttt{extra(C)}
 - \texttt{extra(X)} = \texttt{extra(X)} + \texttt{extra(C)}
 - rake: same as above, but only for the edge/cluster that was not raked.
Top Trees

- Example (path operations: $\text{findmin/}\text{addvalue}$)
 - To find the minimum cost in path $a \rightarrow b$:
 - $K = \text{expose}(a, b)$;
 - return $\text{mincost}(K)$.
 - To add a cost x to all edges in path $a \rightarrow b$:
 - $K = \text{expose}(a, b)$;
 - $\text{mincost}(K) = \text{mincost}(K) + x$;
 - $\text{extra}(K) = \text{extra}(K) + x$.

Top Trees

- Can handle operations such as:
 - tree costs (just a different way of handling rakes);
 - path lengths;
 - tree diameters.
- Can handle non-local information using the select operation:
 - allows user to perform binary search on top tree.
- an example: tree center.
- Top trees are implemented on top of topology trees, which they generalize.

Topology Trees

- Proposed by Frederickson [1985, 1997].
- Work on rooted trees of bounded degree.
 - Assume each vertex has at most two children.
 - Values (and clusters) are associated with vertices.
 - Perform a maximal set of independent moves in each round.
 - Handle updates in $O(\log n)$ worst-case time.

RC-Trees

- Proposed by Acar et al. [2003].
- Can be seen as a variant of topology trees.
 - Information stored on vertices.
 - Trees of bounded degree.
- Main differences:
 - Not necessarily rooted.
 - Alternate rake and compress rounds.
 - Not maximal in compress rounds (randomization).
 - Updates in $O(\log n)$ expected time.

Constructions

- Topology, Top, and Trace trees:
 - contraction-based.
- ST-Trees: path-based.
 - But there is a (rough) mapping:
 - dashed = rake
 - solid = compress
 - Both part of a single path
- ST-Trees can be used to implement topology trees [AHdLT03].

Chronology

- ST-Trees:
 - Sleator and Tarjan (1983); with balanced binary search trees;
 - Sleator and Tarjan (1985); splay trees.
- Topology Trees:
- ET-trees:
 - Hemminger and King (1995);
 - Tarjan (1997).
- Top Trees:
 - Ahuja, de Lichtenberg, and Thorup (1997);
 - Ahuja, de Lichtenberg, and Thorup (2003).
- RC-Trees: