Problem 1:

A -> BAB | B | ϵ
B -> 00 | ϵ

Add a new start symbol.
S -> A
A -> BAB | B | ϵ
B -> 00 | ϵ

Remove ϵ rules.
S -> A | ϵ
A -> BAB | B | AB | BA | BB
B -> 00

Remove unit rules.
S -> BAB | BA | AB | BB | 00 | ϵ
A -> BAB | BA | AB | BB | 00
B -> 00

Convert to proper form.
S -> BT | BA | AB | BB | CC | ϵ
A -> BT | BA | AB | BB | CC
T -> AB
B -> CC
C -> 0

Problem 2:

(a.) Let $M_c = (Q_c, \Sigma_c, \Gamma_c, \delta_c, q_c, F_c)$ be a PDA that accepts C, and $M_r = (Q_r, \Sigma_r, \delta_r, q_r, F_r)$ be a DFA that accepts R. Since only one machine uses the stack, we can run the two machines in parallel and accept if both accept. The machine specification is below.

$Q = (Q_c \cup \{q_{rej}\}) \times (Q_r \cup \{q_{rej}\})$
$\Sigma = \Sigma_c \cup \Sigma_r$
$\Gamma = \Gamma_c$
$q = (q_c \times q_r)$
$F = (F_c \times F_r)$
$\delta((q_0, q_1), a, q) = \{(q, \delta_c(q_1, a), \beta) \mid (q, \beta) \in \delta_c(q_0, a, q)\}$
$\delta((q_0, q_1), \epsilon, q) = \{(q, q_1, \beta) \mid (q, \beta) \in \delta_c(q_0, a, q)\}$
Assume A is context-free. Then, $A \cap a^*b^*c^* = \{a^n b^n c^n\}$ is also context-free, a contradiction. See Example 2.20 for a proof of this.

Problem 3:

We use a regular grammar to simulate the non-deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$. For each state $q_i \in Q$, we create a variable A_i. The start variable is the variable corresponding to the start state. For each transition $\delta(q_i, a) = P$, we add a rule $A_i \to aA_j$ for every $q_j \in P$. For each accept state $q_i \in F$, we add the rule $A_i \to \epsilon$. Note that an accepting path in Q for a string s corresponds one-to-one with a derivation for the string s in the new grammar, so $L(G) = L(M)$.

Problem 4:

Consider the following context-free grammar G:

$$
S \to B1B \mid B1S \\
B \to BB \mid 0B1 \mid 1B0 \mid \epsilon
$$

Let L' be the language of strings with a balanced number of ones and zeroes. We first show that B generates all strings in L'.

$L(B) \subseteq L'$:

A simple inductive argument shows that B generates only strings with a balanced number of ones and zeroes.

$L' \subseteq L(B)$ (by induction):

Base case: B generates all strings in L' of length two or less (01 and 10).

Inductive step: Consider a string s in L' of length greater than two. If s is of the form $0s'1$ or $1s'0$, then s' must be balanced, and by the inductive hypothesis B generates s', so B can generate s. Otherwise, suppose s is of the form $0s'0$. Let the bias at i be the number of zeros appearing in the first i symbols minus the number of ones appearing in the first i symbols. The bias at one is one, while the bias at $|s|-1$ is negative one. Thus, the bias must be zero for some $0 < i < |s|$. Then, the first i symbols form a balanced substring, as do the remaining symbols. Each substring is of length smaller than $|s|$, so by the inductive hypothesis each is generated by B and s is generated by $B \to BB$.

Problem 5:

Let $s = a^ib^jc^j$ be any string in L_1, where $|s| > 5$. We can always break $s = (u)(v)(x)(y)(z)$ into five pieces which satisfy the basic pumping lemma using the following case analysis.

If $i < j-1$, then $s = (a^ib^{i-1})(b)(c)(c^{j-1})$.
If \(i = j-1 \), then \(j \geq 2 \) (since \(|s| > 5 \)), and \(s = (a^ib^{j-2})(bb)(\epsilon)(cc)(c^{j-2}) \).
If \(i > j-1 \), then \(i \geq 2 \) (since \(|s| > 5 \)), and \(s = (\epsilon)(a)(\epsilon)(a^i c^j b c^j) \).

Problem 6:

(a.): Let \(G \) be a CFG for CFL \(L \). Let \(b \) be the maximum number of symbols in the right-hand side of a rule. We may assume that \(b \geq 2 \). Let \(|V| \) be the number of variables in \(G \). We set \(p \) to be \(b|V|+2 \). We say that an interior node of the parse tree is structural if at least two of its descendants generate a string containing a marked character. If \(w \in L \) has at least \(p \) marked characters, any parse tree for \(w \) will contain a path from root to leaf containing at least \(|V| + 1 \) structural nodes. Let \(\tau \) be the parse tree for \(w \) with the smallest number of nodes. There exists some path from root to leaf containing at least \(|V| + 1 \) structural nodes. Thus, some variable \(R \) will appear more than once on this path as a structural node. We select \(R \) to be a variable that repeats among the lowest \(|V| + 1 \) structural nodes on this path. Let the upper occurrence of \(R \) generate \(vxy \), and let the lower occurrence of \(R \) generate \(x \). Both of these subtrees are generated by the same variable, so we may substitute one for the other to generate. This establishes condition (a). Either \(v \) or \(y \) must have a marked character, since two of the upper occurrence of \(R \)’s children generate marked characters, and only one of these children generates the lower occurrence of \(R \). This establishes condition (b). Finally, since the upper occurrence of \(R \) falls within the bottom \(|V| + 1 \) structural nodes on the path, this variable may generate at most \(b|V|+2 \) marked characters, establishing condition 3.

(b.): Consider the string \(s = a^{p+p!}b^pc^p \), where all of the \(b \)'s and \(c \)'s are marked. We will attempt to breaks \(s \) into five pieces \(uvxyz \) satisfying Ogden’s lemma. There must be at least one marked character in \(v \) and \(y \) together, so one of the two must contain a “\(b \)” or “\(c \)”.
If either contains an “\(a \)” ,neither may contain a “\(c \)”, since otherwise \(vxy \) would have more than \(p \) marked characters. But then, since either \(v \) or \(y \) must contain a “\(b \)”, the pumped string will contain different numbers of \(b \)'s and \(c \)'s, a contradiction. On the other hand suppose neither string contains an “\(a \)”. If \(v \) and \(y \) together contain different numbers of \(b \)'s and \(c \)'s, pumping will yield a string not in the language. If either \(v \) or \(y \) contains both \(b \)'s and \(c \)'s, pumping likewise yields a contradiction. Finally, if \(v \) consists only of \(n \) \(b \)'s, \(n \leq p \), and \(y \) consists only of \(n \) \(c \)'s, \(n \leq p \), then for \(i = p!/n \), we have a contradiction.