Remember that the class $P = \bigcup_k \text{DTIME}(n^k)$, $NP = \bigcup_k \text{NTIME}(n^k)$ and
$L = \text{DSPACE} \left(\log n \right)$.

1. For your favorite programming language, write a program that outputs its own code.

2. Let A be the language of properly nested parentheses. For example
 $(()$ and $()(())()$ are in A but $)$ is not. Show that A is in L.

3. Show that NP is closed under union, intersection and the $*$-operation.
 Show the same for P.

4. Show that NP consists of exactly the set of languages L such that there is an A in P and a constant k such that

 \[x \in L \iff \exists y, |y| = |x|^k \text{ and } (x, y) \in A. \]

 Does the same result hold for some A in L?