Probability and Information Retrieval

Introduction to Artificial Intelligence
COS302
Michael L. Littman
Fall 2001

Administration

Foundations of Statistical Natural Language Processing
By Christopher D. Manning and Hinrich Schutze
Grade distributions online.

The IR Problem

query
 • doc1
 • doc2
 • doc3
...
Sort docs in order of relevance to query.

Example Query

Query: The 1929 World Series
384,945,633 results in Alta Vista
 • GNU’s Not Unix! - the GNU Project and the Free Software Foundation (FSF)
 • Yahoo! Singapore
 • The USGenWeb Project - Home Page
 ...

Better List (Google)

• TSN Archives: The 1929 World Series
• Baseball Almanac - World Series Menu
• 1929 World Series - PHA vs. CHC - Baseball-Reference.com
• World Series Winners (1903-1929) (Baseball World)

Goal

Should return as many relevant docs as possible recall
Should return as few irrelevant docs as possible precision
Typically a tradeoff...
Main Insights

How identify “good” docs?
- More words in common is good.
- Rare words more important than common words.
- Long documents carry less weight, all other things being equal.

Bag of Words Model

Just pay attention to which words appear in document and query. Ignore order.

Boolean IR

"and" all uncommon words

Most web search engines.
- Altavista: 79,628 hits
- fast
- not so accurate by itself

Example: Biography

Science and the Modern World (1925), a series of lectures given in the United States, served as an introduction to his later metaphysics. Whitehead’s most important book, Process and Reality (1929), took this theory to a level of even greater generality.

http://www.grupi.doc.at and.ac.uk/history/philosophy/Whitehead.html

Vector-space Model

For each word in common between document and query, compute a weight. Sum the weights.

\[\text{tf} = \text{(term frequency)} \] number of times term appears in the document

\[\text{idf} = \text{(inverse document frequency)} \] divide by number of times term appears in any document

Also various forms of document-length normalization.

Example Formula

\[
\text{Weight}(i,j) = (1 + \log(\text{tf}_{i,j})) \log \frac{N}{\text{df}_i}
\]

Unless \(\text{tf}_{i,j} = 0 \) (then 0).

\(N \) documents, \(\text{df}_i \) doc frequency
Cosine Normalization

\[\cos(q,d) = \frac{\sum q_i d_i}{\sqrt{\sum q_i^2} \sqrt{\sum d_i^2}} \]

Downweights long documents. (Perhaps too much.)

Probabilistic Approach

Lots of work studying different weighting schemes. Often very ad hoc, empirically motivated. Is there an analog of A* for IR? Elegant, simple, effective?

Language Models

Probability theory is gaining popularity. Originally speech recognition: If we can assign probabilities to sentence and phonemes, we can choose the sentence that minimizes the chance that we’re wrong...

Probability Basics

- \(\Pr(A) \): Probability A is true
- \(\Pr(AB) \): Prob. both A & B are true
- \(\Pr(\neg A) \): Prob. of not A: \(1 - \Pr(A) \)
- \(\Pr(A|B) \): Prob. of A given B
 \[\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \]
- \(\Pr(A+B) \): Probability A or B is true
 \[\Pr(A) + \Pr(B) - \Pr(AB) \]

Venn Diagram

![Venn Diagram]

Bayes Rule

\[\Pr(A|B) = \frac{\Pr(B|A) \Pr(A)}{\Pr(B)} \]

because
\[\Pr(AB) = \Pr(B) \Pr(A|B) = \Pr(B|A) \Pr(A) \]

The most basic form of “learning”:
- picking a likely model given the data
- adjusting beliefs in light of new evidence
Probability Cheat Sheet

- **Chain rule:**
 \[Pr(A,X|Y) = Pr(A|Y) \cdot Pr(X|A,Y) \]

- **Summation rule:**
 \[Pr(X|Y) = Pr(A \mid X \mid Y) + Pr(\sim A \mid X \mid Y) \]

- **Bayes rule:**
 \[Pr(A|B,X) = Pr(B|A,X) \cdot Pr(A|X)/Pr(B|X) \]

Speech Example

- **Pr(sentence|phonemes)**
 \[Pr(\text{sentence}) / Pr(\text{phonemes}) \]

Classification Example

- **Given a song title, guess if it's a country song or a rap song.**
 - U Got it Bad
 - Cowboy Take Me Away
 - Feelin' on Yo Booty
 - When God-Fearin' Women Get The Blues
 - God Bless the USA
 - Ballin' out of Control

Probabilistic Classification

- **Language model gives:**
 - \(Pr(T|R), Pr(T|C), Pr(C), Pr(R) \)

- **Compare**
 - \(Pr(R|T) \) vs. \(Pr(C|T) \)
 - \(Pr(T|R) \cdot Pr(R) \) / \(Pr(T) \) vs. \(Pr(T|C) \cdot Pr(C) \) / \(Pr(T) \)
 - \(Pr(T|R) \cdot Pr(R) \) vs. \(Pr(T|C) \cdot Pr(C) \)

Naïve Bayes

- **Pr(T|C)**
 - Generate words independently
 - \[Pr(w_1, w_2, w_3, ..., w_n|C) = Pr(w_1|C) \cdot Pr(w_2|C) \cdot ... \cdot Pr(w_n|C) \]

- So, \(Pr(\text{party}|R) = 0.02, \) \(Pr(\text{party}|C) = 0.001 \)

Estimating Naïve Bayes

- **Where would these numbers come from?**
- **Take a list of country song titles.**
- **First attempt:**
 \[Pr(w|C) = \frac{\text{count}(w; C)}{\sum_w \text{count}(w; C)} \]
Smoothing

Problem: Unseen words.
Pr(party|C) = 0
Pr(Even Party Cowboys Get the Blues) = 0
Laplace Smoothing:
Pr(w|C) = \frac{1 + \text{count}(w; C)}{\sum_w (1 + \text{count}(w; C))}

IR Example

\[Pr(d|q) = \frac{Pr(q|d)Pr(d)}{Pr(q)} \]

Language model

Constant

Prior belief d is relevant (assume equal)

Can view each document like a category for classification.

Other Applications

Filtering
- Advisories
- Text classification
- Spam vs. important
- Web hierarchy
- Shakespeare vs. Jefferson
- French vs. English

Smoothing Matters

\[p(w|d) = \begin{cases}
 p_s(w|d) & \text{if } \text{count}(w;d) > 0 \text{ (seen)} \\
 p_s(w) & \text{if } \text{count}(w;d) = 0
\end{cases} \]

\[p_s(w|d): \text{estimated from document and smoothed} \]

\[p_s(w): \text{estimated from corpus and smoothed} \]

Equivalent effect to TF-IDF.

What to Learn

IR problem and TF-IDF.
Unigram language models.
Naïve Bayes and simple Bayesian classification.
Need for smoothing.

Homework 6 (due 11/14)

1. Use the web to find sentences to support the analogy traffic:street::water:riverbed. Give the sentences and their sources.
2. Two common Boolean operators in IR are “and” and “or”. (a) Which would you choose to improve recall? (b) Which would you use to improve precision?
3. Argue that the language modeling approach to IR gives an effect like TF-IDF. (a) First, argue that $Pr(q|d) > Pr(q'|d)$ if q' is just like q but