
Routing as a Service
Karthik Lakshminarayanan Ion Stoica Scott Shenker

University of California, Berkeley

Abstract
Typically routing is either scalable but inflexible, such as
current Internet routing, or flexible but unscalable, such as
source routing with with per-flow route discovery. In this pa-
per we argue that to achieve both flexibility and scalability,
customized routing should be offered as a service by third-
party providers. The logical separation of routing from for-
warding allows different route selection mechanisms to coex-
ist and to evolve over time as routing requirements change.

1 Introduction
The recent renaissance of Internet routing research (see [5,
6, 21, 30] for a sampling of the recent literature) has pro-
duced a bevy of new designs that alleviate one or more of the
problems plaguing current routing protocols [21, 31]. In this
paper we do not propose a particular new routing protocol
but instead address the structure of routing. Currently, rout-
ing is limited to the default route offered by the infrastructure.
Here we argue that to offer more routing flexibility to flows
without sacrificing scalability, customized routing should be
offered as a service by third-party providers. This approach
would enable routing to constantly evolve to meet new appli-
cation and performance requirements as they arise, without
requiring the global adoption of a new routing protocol.

By customized routing, we mean that the routing require-
ments are idiosyncratic to individual flows, and may consider
particular policy constraints or unusual routing metrics (not
just QoS parameters1) or some combination thereof. Our goal
is to provide customized routing as a way of enhancing Inter-
net routing, not replacing it.

There has long been a tension between flexibility and scal-
ability in routing algorithms. The one-size-fits-all approach
of current routing is scalable because the overhead of route
computation is amortized across all flows. While this ap-
proach is generally adequate, there have been recurrent efforts
to allow end users to tailor their routes to better meet their
performance and policy requirements. These efforts at cus-
tomized routing, which were intended to augment rather than
replace default routing, scaled poorly because typically the
route computation was done separately for each flow. Source
routing is the canonical example where individual sources
independently explored potential routes. Thus, while source
routing can accommodate specialized needs, it does not pro-
vide a scalable routing alternative for any sizable fraction of
Internet traffic.

In this paper we seek to achieve both scalability and flexi-
bility. We do so by leveraging two recent trends in routing re-

1Proposals for computing a few different paths based on different routing
metrics, such as maximizing bandwidth, are merely limited extensions of
default routing rather than truly customized routing.

search. The first is that of overlays. Work such as Detour [26],
RON [3], and others have shown that one need not control ev-
ery router in order to have a substantial impact on the routes
packets take; controlling a much smaller set of overlay nodes
is sufficient for meeting many routing goals. Overlays are not
a solution to customized routing, because overlays typically
offer a single default route instead of catering to flows’ in-
dividual needs. Thus, while overlays can better the Internet’s
routing algorithm along one or more dimensions, such as per-
formance [26] or responsiveness [3], they are not the solution
to our problem. Instead, we use overlays coupled with exten-
sible routing, rather than embedded routing, to provide the
desired customization.

Making routing extensible relies on the second trend,
which is to separate the computation of routes from the ac-
tual forwarding actions that implement those routes [14]. For-
warding, in which a router consults a routing table to choose
an outgoing interface for a given packet, obviously must oc-
cur on the router itself. However, there is no inherent rea-
son why the computation of the routing table must also occur
on the router; the routing table could be computed elsewhere
and transmitted to the router. For example, an ISP or enter-
prise could perform centralized route computation and dis-
tribute them to all routers in their domain. The recent RCP
proposal [14] makes an eloquent case for this physical sepa-
ration, describing a basic design and the associated challenges
of such an approach.

Here we extend the separation to make routing and for-
warding not only physically separate but also logically sepa-
rate. That is, the route computations need not be performed
by the same organization that operates the routers. In partic-
ular, we advocate that the route computations be performed
by third parties (which we call Routing Service Providers, or
RSPs) that are outside the routing infrastructure. Thus, our
proposal is simply that customized routing be provided as a
service. Our main point here is that routing be logically sep-
arated from forwarding; an ISP can also provide RSP service
much like an ISP provides email service today in the Internet
(though they are logically separate).

The Routing as Service (RAS) approach allows for both
scalability2 and flexibility. The fact that routes are provided
by services allows the sharing of route exploration overhead
between all customers of that service, making RAS scalable.
The fact that these services are deployed by third-parties
means that the route computation is not part of the fixed in-
frastructure but instead is provided by a diverse and compet-
itive market. The route choices can thus be many in number

2Here, we only try to argue qualitatively that our architecture allows for
scalability; as we note later developing scalable mechanisms for particular
sub-issues is still a daunting challenge.

1



and varied in nature, and can change over time as different
requirements emerge. In this way, route computation can be-
come a flexible and evolvable tussle space [11] where multi-
ple RSPs can safely compete without endangering the stabil-
ity of the core infrastructure.

But route computation is only half the story. To implement
these routes, they must be installed in routers willing to ac-
cept them. We imagine that there is a coherent forwarding
infrastructure (FI) that accepts computed routes. We envision
an FI that is an overlay on the underlying Internet. We discuss
later why ISPs might be willing to create such an FI, but we
acknowledge that this will be a major hurdle to overcome.

The RAS approach has other challenges and disadvan-
tages. Using RAS incurs extra overhead and perhaps expense.
Moreover, it isn’t clear that these explicitly constructed routes
can be very robust during network stress. However, flows can
always resort to default routing if the customized route isn’t
adequate; thus, there is a lower bound on how badly flows can
suffer under RAS. We explore the challenges with the RAS
approach in Section 2.2. In Section 3, we describe a proto-
type implementation of a FI along with a simple distributed
RSP that addresses some of the challenges.

The goal of the RAS approach is to scalably support cus-
tomized routing. While we believe this is an important goal,
we also believe it is relevant only to a small fraction of In-
ternet traffic. We assume that most flows will be adequately
served by the Internet’s default routing. However, we imagine
that there are now, and will continue to be, flows that for one
reason or another (e.g., higher reliability, better per-packet
quality of service, policy constraints, etc.) desire customized
routes. The key assumption we make is that this population is
large enough so that unscalable methods like source routing
aren’t viable; we don’t assume, nor does the RAS approach
require, that this population comprises the bulk of Internet
traffic. Thus, the role of RSPs is not to displace basic Internet
routing, but to enhance it. It is crucial that default routes will
still be implemented by the infrastructure; only flows requir-
ing specialized routes will use an RSP.

2 Overview and Challenges
In this section we first present the basic RAS architecture and
then discuss the challenges in realizing this architecture.

2.1 Overview
The basic architecture, as shown in Figure 1, consists of three
entities: the forwarding infrastructure (FI), a collection of
routing service providers (RSPs), and the population of end-
hosts. The FI can take many forms: it could be a set of spe-
cialized routers run by ISPs, or a set of commodity overlay
nodes operated either by the ISPs, or some other entity (e.g.,
PlanetLab). In order to be effective, FI nodes must be well-
provisioned, well-connected, and well-managed, but other-
wise the RAS approach does not dictate the nature of the FI
nodes (except as specified below).

The FI nodes are interconnected to form a routing overlay
network. The virtual links of this overlay are logical unidi-
rectional paths along which packets are forwarded via the un-

Figure 1: The main components of the RAS architecture: the
forwarding infrastructure (FI), one or more routing service
providers (RSPs), and end-hosts.

derlying default routing protocol. Furthermore, these nodes
export a forwarding primitive that allows computed paths to
be used. This primitive could be as simple as accepting source
routes [25], in which no state is kept in the FI and all routes
are carried in the packets. Alternatively, the primitive could
be an explicit route establishment interface (e.g., MPLS tun-
nels [24]) and, in this case, the route is stored inside the FI.3

Route computation is provided by third-party entities
(RSPs), using network information gathered from the FI. This
network information may be provided by the FI itself based
on internal measurements, or the product of external measure-
ments conducted by the RSPs (either individually or jointly).

End-hosts that desire special routing query the appropriate
RSPs to obtain paths with the desired characteristics.4 The
RSP returns a path (a sequence of FI nodes) and the end-host
then uses this path for forwarding packets along the FI. Flows
that do not require special routing simply use the default In-
ternet routing. We thus think that the bandwidth that the ISPs
allocate to the virtual links of the forwarding infrastructure
will be a fraction of the total bandwidth of the physical links.

It is an open question how the inter-domain policies of the
ISPs would interact and influence the routing policies of the
FI. In the simplest scenario, a virtual link once established
in the FI can be used by any RSP for computing routes over
the FI. One could also envision a more complex system (such
as Platypus [23]) where only routes that conform to the ISP
policies are allowed to exist in the FI. In the rest of the pa-
per, however, we assume that each RSP knows beforehand
the virtual links it can use for selecting the routes.

2.2 Challenges
While the basic RAS architecture seems simple, it is not with-
out significant challenges. These challenges can be separated
into two categories: those that arise from the physical sepa-
ration of forwarding from routing, and those that arise from
the logical separation. We now discuss each in turn. While
we have partial solutions (and directions) to some of these
challenges, addressing the rest forms our research agenda.

3The reason why RAS employs an overlay, rather than just the native
routers, is the hurdle of implementing this forwarding primitive. Since con-
trolling routing at a small subset of nodes appears to give very good routing
performance [26], given default routing in between those nodes, we choose
to implement the forwarding primitive at a reduced set of nodes.

4Defining a flexible querying API (which need not be uniform across all
RSPs) will be an important enabler of RAS, but we don’t address that issue
in this paper.

2



2.2.1 Physical Separation

The physical separation between routing and forwarding was
discussed in [14], which addressed the problem in the context
of computing default routes for a medium scale network (ISP
or large enterprise). Here we address a much larger network
and, more importantly, are concerned with customized routes
rather than default routes. Thus, we focus on a somewhat (but
not completely) different set of challenges.

Scalability. The size of the Internet poses a daunting chal-
lenge to any RSP (though the fact that RAS uses an overlay,
and not the full set of native routers, reduces the size of the
problem). The actual computation of the route is relatively
tractable, but obtaining the information needed as input to
the computation is far more problematic. In order to make
informed route choices, an RSP needs an accurate network
map with reasonably up-to-date and accurate estimates of the
relevant network characteristics (such as connectivity infor-
mation, delay, loss rate, bandwidth).

With only physical separation between routing and for-
warding, the network infrastructure could take the necessary
measurements. However, at very large network scales, the
rate of incoming network information would overwhelm a
single RSP node. To fully scale, there must be a way to dis-
tribute the route computation, so that each node need only
maintain a map of a workable portion of the network. We dis-
cuss such an approach in the following section.

The other aspect of scaling is the number of flows re-
questing routes. Separate route requests are parallelizable and
hence can be handled by replicating the RSP nodes (and by
having multiple RSPs).

Of course, there are many tricks one might use to accom-
modate scale, such as caching recent route computations,
adaptive measurement dissemination (update measurement
information only when it has changed significantly), and in-
cremental path computations, that we do not discuss here.

Route Insertion. The physical separation necessitates a
method for communicating a path to the network. Source
routing is one approach, and it has the benefit of not requiring
the network to store state. But source routing incurs signifi-
cant per-packet overhead (both in bandwidth and in process-
ing), and isn’t suitable for multicast.

The alternative is to install state in the network. The host
could either insert local forwarding state (like MPLS) at
each FI node along the path, or use a higher level state-
establishment protocol (like RSVP) to establish the state.
Note that while the host knows the entire path, the state in-
stalled in each FI node only describes the next-hop of the
flow’s packets. We assume that the combination of source-
destination, and a flow identifier (if available) will be used to
identify the packets intended for this custom path. Installing
state in the network removes the per-packet overhead, and
handles single source multicast.

Robustness and Responsiveness. In cases where there is
end-to-end feedback about the state of the flow, the source is
probably in a better position than the network (or the RSP)
to determine if a path has failed (the source might not know

why or where the path failed, but it can detect degraded per-
formance). Upon detection, the source can resort to default
routing, send another request to the RSP, or even proactively
setup backup paths in the FI.

However, it isn’t clear what should happen if the flow
doesn’t have end-to-end feedback (such as in some large mul-
ticast flows). If the RSP gets information indicating that a link
has seriously degraded, it might alert the sources using paths
traversing the degraded link, but an RSP doesn’t know how
long flows will stay active so it isn’t clear who the RSP should
contact. It appears that flows using customized routes should
either do their own end-to-end performance checking, or be
prepared for undetected outages.

The rate at which measurements are updated is the limit-
ing factor in providing routes with currently adequate perfor-
mance. If there are portions of the network that are extremely
flaky, where the performance regularly changes on time scales
shorter than the measurement interval, RSPs could either
avoid such areas or indicate, when returning a path, that their
confidence in the path is low.

2.2.2 Logical Separation
The logical separation of routing and forwarding removes the
natural trust between the FI and the entity that computes the
route. It also removes the natural coordination between the
various entities computing the routes, because now there are
several competing route providers.

DoS Attacks. All mechanisms for route computation and
route insertion are driven by RSPs and end-hosts respectively.
Since both are untrusted (or partially trusted) entities, the FI
must protect itself from traffic attacks arising from malicious
route insertions. Simple cryptographic puzzles can protect the
FI nodes from state-based attacks [22, 13].

A malicious route insertion can create a loop (MPLS-like
state insertion algorithms are vulnerable to this, but source
routing is not), thereby consuming network resources until
the TTL has expired. Thus, the FI should be able to detect
loops, or only deal with RSPs that it trusts.5

While state insertion raises the possibility of traffic hijack-
ing (whereby one host injects a route for another host’s traf-
fic), a simple challenge-response can make sure that the re-
quest came from the appropriate source (or at least another
host on that subnet; the challenge can’t prevent a same-subnet
spoofing attack).

Traffic Engineering. The underlying ISPs carefully tune
their routing protocols to produce the desired traffic patterns.
However, the RSPs choose overlay routes to best serve their
customers, without regard to the wishes of the ISP. Moreover,
there can be many RSPs computing their routes in parallel
without any coordination. This could lead to wild traffic os-
cillations as RSPs individually react (and collectively over-
react) to the latest traffic measurements. Since the RSPs are
only semi-trusted, the FI should also protect itself from RSPs

5When the host inserts the path, it can do so with a path description dig-
itally signed by the RSP, so that the FI nodes can be assured that the path
came from a trusted source.

3



that maliciously select routes to cause congestion on selected
links. The impact that the decisions of the RSPs has on the
rest of the Internet can be reduced by the ISPs by restricting
the bandwidth devoted to the FI. Studying the interactions
between multiple, perhaps non-cooperating, RSPs forms an
important part of our future research.

Trust and Cooperation. There is (at least) one fundamen-
tal question that we have so far ducked: why would ISPs ever
participate in the forwarding infrastructure and give up some
control over routing? The fact is that currently overlays are a
thorn in the side of ISPs, both as a business competitor — they
reap profits that the ISPs would like for themselves — and as
a traffic source. Overlays make traffic engineering hard be-
cause they are large sources of traffic that can unpredictably
change en masse. ISPs currently have very little leverage over
overlays (such as Akamai), and the problems are likely to
worsen over time. This conflict of interests has been noted
by many, including [23].

RAS is a compromise between the interests of overlay
providers and ISPs. The ISPs, through their management of
the FI, can presumably recoup some of the profits that go to
the overlay operators. In return, the ISPs would make life
easier for overlay operators (or at least those that choose to
follow this path) by turning them into RSPs; they would no
longer have to manage the network, they would only have
to provide correct routes.6 Similarly, the ISPs might provide
good traffic measurements to the RSPs as a way of helping
them provide good service, since the ISPs recoup some of the
resulting revenue.

3 Prototype Implementation
The previous discussion of the architecture was quite general.
In order to understand the RAS approach better, we imple-
mented a particular instantiation. This prototype is presented
here only as a proof-of-concept; we expect further refinement
as we gain experience. While this instantiation partially an-
swers some questions such as security and scalability, many
topics such as trust, interaction between multiple RSPs and
other aspects of scalability are left for future investigation.

3.1 Forwarding Infrastructure: Path Setup
Based on our earlier discussion (see Section 2.2), implement-
ing an MPLS-like forwarding primitive is straightforward. In
a simple realization, end-hosts would construct the state on
the FI nodes hop by hop. That is, each infrastructure node
would know the next hop for a particular (source, destination,
flow-label) combination. The flow-label here is a flat identi-
fier that represents a flow corresponding to the (source, des-
tination) pair.7 For multicast communication, receivers insert
the paths, which are subject to a challenge-response protocol
to protect themselves from unwanted subscription attacks.

6Some overlay networks such as Akamai deliver services beside pure
packet delivery. The RAS approach could support such services by directing
traffic to the appropriate service-level nodes. We don’t dwell on this here,
but the RAS approach is, in this respect, quite similar to that of

���
[27] and

related proposals [4, 28].
7Source and destination information is not needed if the flow-label is cho-

sen uniquely.

This simple primitive is limited to unicast and receiver-
driven single-source multicast and, as such, is quite con-
ventional. In order to gain experience with a more flexible
forwarding primitive (and to understand how much we can
stretch the generality of RAS), we also leveraged recent re-
search in forwarding overlays and experimented with an in-
frastructure that allows end-hosts to insert delegates in the
path of packets. As observed in the proposal for a layered
naming architecture [4, 28] and in the ��� design [27], delega-
tion allows a more general set of communication primitives,
including anycast, architecturally coherent middleboxes, and
service composition.

In particular, packets are not sent to the IP addresses of
the logical destination, but instead to that of an intermediary
who has been delegated to process the packet on behalf of
the destination; the intermediary may choose, as part of that
processing, to forward the packet to the end-point, or it might
drop it (in the case of a firewall), or it might send the packet
to other intermediaries (in the case of service composition).
In this architecture, both senders and receivers have control
over the path packets take along the infrastructure. We also
used the cryptographic operations proposed in [18] to protect
end-hosts (and the infrastructure) from DoS attacks such as
formation of loops.

The question of what the actual FI primitive should be is
still open; we however believe that experience gained with
deployed implementations will guide us in answering it.

3.2 Monitoring the Network
Infrastructure measurements. The FI nodes monitor the

performance of the virtual links, export this information to
RSPs. Currently, we monitor the delay, loss-rate and the avail-
able bandwidth of the virtual links. In an ISP deployment, the
FI nodes might export coarse forwarding rules that might in-
directly reflect the preference or the policy constraints of the
ISPs. We also plan to investigate adaptive techniques for up-
dating the network information in the future.

Indirect measurements. While we expect that direct mea-
surements performed by the infrastructure would be preferred
due to efficiency considerations, we also have explored the al-
ternative strategy of RSPs performing indirect measurements
over the FI (without additional help from the FI). Owing
to lack of space, we now give a brief outline of one sim-
ple example: an RSP node � measures the RTT between
two FI nodes �	� and ��
 . To do so, � sends one packet
along the path � ��
�� ����� � ����� , and another along the path
� 
�
�� ����� � ��� 
 ��� � ����� . The RTT between � � and � 
 can
be computed as the difference between the RTTs of the pack-
ets sent along paths ��
 and ��� . In a technical report [19],
we have presented (and evaluated) techniques for measur-
ing some commonly used metrics (delay, loss rate and band-
width) in more detail.

3.3 Routing Service
In response to requests from end-hosts, the RSP returns
application-specific paths between any two nodes in the in-

4



frastructure.8 For this, the RSP maintains a performance map
of the infrastructure (using either its own external measure-
ments or internal measurements from the FI).

In the case of an infrastructure with no more than a few
hundred nodes, the RSP can maintain the map of the entire
infrastructure at a single server. To handle a large number of
requests, the RSP can simply replicate this server. However,
as the FI becomes larger, a single server can no longer main-
tain the map of the entire infrastructure.

In our initial realization, we used a simple graph parti-
tioning technique to divide the network graph among multi-
ple sets of replicated RSP nodes spread through the network.
Each RSP node maintains information about the virtual links
between all the nodes that it is responsible for, and a subset
of the virtual links that have one node that it is responsible
for. More precisely, given any two RSP nodes � and ��� , the
RSP ensures the existence of at least

�
pairs of nodes ��� �

and ����� ��� such that there is a virtual link from � to �	� .
Note that in this design, it is possible to compute a path be-
tween any two nodes � � and � 
 by contacting no more than
two RSP nodes, one that is responsible for the domain of � � ,
and another responsible for the domain of � 
 . A redundancy
factor of

�
is chosen to ensure that there are multiple paths

between two domains.
The quality of the paths computed by the RSP is deter-

mined by the partition of the graph. We used METIS [16], a
serial graph partitioning tool, to divide the graph. Initial ex-
perimental results (reported in [19]) show that while our par-
tition method works reasonably well in the case of a small
infrastructure, there is room for improvement with large net-
work sizes.

3.4 End-hosts
Our current RSP query interface is simple: end-hosts specify
the start and end points of the route and the metric to opti-
mize. We assume that the end-hosts know of appropriate start
and end FI nodes; discovering the appropriate FI nodes could
be done, but we don’t discuss it here. Designing a flexible
API for end-hosts to query the RSPs is an important chal-
lenge. In the future, we plan to leverage the power of a high
level declarative query language as proposed in [20].

3.5 Implementation Status
We have implemented the FI and a distributed RSP that runs
on multiple nodes, each node monitoring a portion of the
infrastructure. In our implementation, we used flow labels
that were 
���
 -bits long. We have deployed the initial version
of our implementation over the PlanetLab testbed. Our mi-
crobenchmarks on a Pentium ��� � GHz machine indicate that
the FI can support a high packet forwarding rate ( ��� ��������
 KB
packets/second) and has a small processing overhead for in-
sertion of one hop of a route (of ��� ��� s). Our initial experi-
ments with a distributed RSP instrumented for the delay met-
ric running over a small FI of 
���� PlanetLab nodes was able

8A more complex RSP can also determine the entire end-to-end path,
including end-hosts.

to perform well (found better paths than the Internet in �����
of the cases) by monitoring a small fraction of the network
using the simple graph partitioning technique. See [19] for
more details.

4 Related Work

The paper touches upon two particular issues that have sepa-
rately received substantial attention in the literature. We dis-
cuss each of these in turn.

Separating control and data planes. The separation of
data and control planes is a recurring theme in the litera-
ture, with the aforementioned RCP [14] being the latest ex-
ample. RCP proposes having a separate routing control plat-
form that performs the task of route computation on behalf of
IP routers. Earlier examples include the Generalized Switch
Management Protocol (GSMP) [12], in which external switch
controllers establish and maintain paths in an ATM, frame
relay and/or MPLS switches. The IETF ForCES [17] work-
ing group proposes separating forwarding and control ele-
ments for IP forwarding devices in a small area system. The
Bandwidth Broker [7] is a centralized entity that computes
routes based on QoS requirements for an entire domain. Aka-
mai [8] implements route computation as a separate com-
ponent, though the details of the patent are not public. Our
proposal merely follows the lead established by these earlier
works, but extends it to the case where the routing and for-
warding are handled by different logical entities.

Routing control. There is a long list of proposals that give
end-hosts more control over routing in the network. The Nim-
rod [9] architecture proposed computation of routes by the
clients of the network, and gave mechanisms for distribution
of network maps. Clark et al. [11] have argued for giving
end-hosts more control over routing as a way of promoting
competition among ISPs. In this context, Yang [30] has pro-
posed a solution that allows both senders and receivers to
choose routes at the AS level. TRIAD [10] has proposed a
name-based routing scheme where end-hosts specify the path
across multiple address space domains. Some of these pro-
posals only discuss mechanisms for host-control over rout-
ing and do not address the problem of how hosts gather the
information to intelligently choose those routes. Among the
proposals that address the problem of choice, none focuses
on achieving scalability by sharing network information ex-
cept Nimrod, which only deals with network topology, and
not finer-grained and more dynamic network measurements.

Several companies such as Sockeye [2] and Route-
Science [1] develop products for multi-homed organizations
to pick their last hop ISP. However, these operate only at the
last-hop at a granularity of organizations, not applications.

Platypus [23] is a recent proposal that allows the construc-
tion of routes that conforms to a certain set of policies of
the infrastructure. We can leverage ideas in Platypus to en-
sure that RSPs compute paths conforming to the ISP require-
ments. However, we defer a detailed study of different policy
enforcement mechanisms (and their tradeoffs) to the future.

5



5 Conclusion
In this paper, we proposed a new routing paradigm: Rout-
ing as Service, wherein specialized route computation is per-
formed by third-party entities outside the forwarding infras-
tructure. This approach allows great flexibility in route cus-
tomization while remaining reasonably scalable. More gener-
ally, it allows customized routing to evolve as needs change
without any change to the infrastructure. The RAS poses sev-
eral challenges that must be addressed before it can be con-
sidered viable, and we have discussed various ways in which
those challenges can be met.

Moreover, we have implemented and deployed a proof-of-
concept prototype of the RAS architecture. We plan to make
this prototype a long-running service on PlanetLab and add
an RSP that can provide some attractive routing functional-
ity (such as that provided by RON). Additionally, we hope
to extend ideas presented in [15] to allow unmodified legacy
applications to use the routing service.

While routing has been our subject here, a more general
issue is at stake: how does one build an evolvable architec-
ture? PlanetLab is one possible model, in which multiple ser-
vices are deployed over a single multiplexed infrastructure.
Such an approach increases evolvability by lowering the de-
ployment barrier to any particular service. This is a familiar
model: Web hosting services are merely more centralized ver-
sions of physical multiplexing.

In contrast, the RAS approach multiplexes at a much
higher-level control plane. Rather than giving access to a vir-
tual machine, the RAS approach calls for the forwarding in-
frastructure to support a higher-level control interface that
other entities can use. As such, it bears similarity to the Active
Network [29] paradigm, but with a more limited interface. We
have less experience with such extensible control of an infras-
tructure. It poses not only technical challenges, that we have
tried to explore here, but also economic ones. It may seem
economically unlikely that ISPs will relinquish such control
(over a portion of their bandwidth) to third-parties. Yet, this
may be the only workable control-sharing compromise in the
ongoing tug-of-war between overlays and ISPs.

References
[1] RouteScience. http://www.routescience.com.
[2] Sockeye Networks. http://www.sockeye.com.
[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Re-

silient Overlay Networks. In Proc. SOSP, 2001.
[4] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,

S. Shenker, I. Stoica, and M. Walfish. A Layered Naming Ar-
chitecture for the Internet. In Proc. ACM SIGCOMM, 2004.

[5] A. Basu, A. Lin, and S. Ramanathan. Routing Using Potentials:
A Dynamic Traffic-Aware Routing Algorithm. In Proc. ACM
SIGCOMM, 2003.

[6] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and G. Wil-
fong. Route Oscillations in I-BGP with Route Reflection. In
Proc. ACM SIGCOMM, 2002.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Service.
RFC 2475, 1998.

[8] C. F. Borenstein, G. L. Miller, S. B. Rao, and T. K. Canfield.
Optimal Route Selection in a Content Delivery Network. US
Patent, Sept. 2002. #WO02071242.

[9] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod
Routing Architecture. RFC 1992, 1996.

[10] D. R. Cheriton and M. Gritter. TRIAD: A New Next Gener-
ation Internet Architecture, Mar. 2000. http://www-dsg.
stanford.edu/triad/triad.ps.gz.

[11] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tus-
sle in Cyberspace: Defining Tomorrow’s Internet. In Proc. of
ACM SIGCOMM, 2002.

[12] A. Doria, F. Hellstrand, K. Sundell, and T. Worster. General
Switch Management Protocol (GSMP) V3. RFC 3292, 2002.

[13] C. Dwork and M. Naor. Pricing via Processing or Combatting
Junk Mail. In E. Brickell, editor, Advances in Cryptology —
CRYPTO ’92, volume 740 of Lecture Notes in Computer Sci-
ence, pages 139–147. International Association for Cryptologic
Research, Springer-Verlag, 1993.

[14] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and
K. van der Merwe. The Case for Separating Routing from
Routers. In Proc. FDNA, 2004.

[15] J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and
K. Wehrle. Supporting Legacy Applications over i3. Technical
report, UCB, 2004.

[16] G. Karypis and V. Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. In SIAM Journal on
Scientific Comp., 1995.

[17] H. Khosravi and T. Anderson. Requirements for Separation of
IP Control and Forwarding. RFC 3654, Nov. 2003.

[18] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. To-
wards a Secure Indirection Infrastructure. In Proc. ACM PODC
(Brief Announcement), 2004.

[19] K. Lakshminarayanan, I. Stoica, and S. Shenker. Routing as
a Service. Technical Report UCB-CS-04-1327, UC Berkeley,
2004.

[20] B. T. Loo, R. Huebsch, J. M. Hellerstein, T. Roscoe, and I. Sto-
ica. Analyzing P2P Overlays with Recursive Queries. Techni-
cal Report IRB-TR-03-045, Intel Research, Nov. 2003.

[21] Z. M. Mao, R. Govindan, G. Varghese, and R. Katz. Route
Flap Damping Exacerbates Internet Routing Convergence. In
Proc. ACM SIGCOMM, 2002.

[22] R. Merkle. Secure Communication Over Insecure Channels.
Commun. ACM, 21(4):294–299, Apr. 1978.

[23] B. Raghavan and A. C. Snoeren. A System for Authenticated
Policy-Compliant Routing. In Proc. SIGCOMM, 2004.

[24] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031, Jan. 2001.

[25] J. Saltzer. Source Routing for Campus-wide Internet Trans-
port. In IFIP Working Group 6.4 Workshop on Local Area Net-
works, 1980.

[26] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: A Case for Informed Internet Routing and
Transport. Technical Report TR-98-10-05, 1998.

[27] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In SIGCOMM, 2002.

[28] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
and S. Shenker. Middleboxes No Longer Considered Harmful.
To appear in OSDI, 2004.

[29] D. Wetherall. Active Network Vision and Reality: Lessons
from a Capsule-based System. In Proc. of SOSP, 1999.

[30] X. Yang. NIRA: A New Internet Routing Architecture. In Proc
FDNA, 2003.

[31] D. Zhu, M. Gritter, and D. Cheriton. Feedback-based Routing.
In Proc Hotnets-I, 2002.

6


