FAQ’s based on the paper ‘Verification of
parameterized concurrent programs by modular
reasoning about data and control’

August 21, 2013

This FAQ is the result of long exchange of mails with Zachary (Zak) who
is one of the author of this paper. Questions/doubts presented in this FAQ came
up while reading the above mentioned paper by the author(chinmay@cse.iitd.ac.in).
The example mentioned in the last question of this FAQ is by Suvam Mukher-
jee(suvam@csa.iisc.ernet.in) and Deepak D’Souza(deepakd@csa.iisc.ernet.in). Zak’s
patience in explaining things was exemplary and I wish to learn this virtue
from him. This FAQ is organized in form of a series of questions and the
corresponding explanations from Zak. I would suggest interested readers to
first go through the paper carefully before looking at this FAQ. You should
download the corrected and the updated version of this paper from Zak’s web
page http://www.cs.toronto.edu/ " zkincaid/ instead of downloading it from the
ACM’s proceedings.

Observation.In Sequential Data Flow Graph construction a data flow edge
u —% v is added for the variable x irrespective of whether it is local or global
but in the subsequent iterations of C'oarsen algorithm only data flow edges of
the form v —% v are added (as a result of interference analysis) where x is a
global variable. This is because only global variables can pass values from one
thread to the another.

Q. What is the intuition to have an abstract annotation (#(u) at location wu,
such that ¢(u) — ¢#(u) and all free variables of :# (u) are global variables?

Ans.Chinmay: I think the intuition is that threads only synchronize via global
variables and # (u) captures the valuations of global variables that reach at
location u. This valuation along with the enabledness condition at some loca-
tion v determine if the location (u,v) can be reached together. This notion is
captured in rules coreachable and mayReach used in the interference analysis.
Zak: The really important thing about ¢ (u) is that it is a finite-domain ab-
straction of i(u), which allows us to do our interference analysis efficiently us-
ing binary decision diagrams. You're right that having global variables makes
it (conceptually) easier to do the enabled-ness checks because all the threads
know how to evaluate global variables. I would say the intuition is that ¢# (u)
is intended to capture synchronization information, and the way that threads
synchronize is to use global variables (since they can’t see each other’s locals).



Q. Does the function enabled(u) change if new data flow edges are added to
the graph?

Ans.Function enabled(u) depends on the choice of observable predicates (C),
which is determined by the predicates used in assume and lock/unlock con-
structs, but not on the annotation ¢(v). Therefore enabling conditions do not
change over the iterations of the coarsening loop.

Q. For the running example of the paper, I think enabled(ul) = lock2 = 1,

enabled(u2) = lockl = 1/ lock2 = 0 and enabled(v4) = counter > 0 hold. Am I

right here? Also, for non-assume and non-lock statements what will be enabled

function? Will it be true for such statements?

Ans.It depends on how we choose C. But if Cislockl = 1,lock2 = 1, counter > 0, counter >= 0
then we would have

e cnabled(ul): lock2 =1

(ut)
e enabled(u2),enabled(vl),enabled(v3): lockl=1
e enabled(u3): counter<=0

(v4)

e cnabled(v4): counter>0

and yes, non-assume, non-lock statements will have the enabling condition
7true”.

Q. If Assume determines enabled at a location and enabled give a observable
formula F#(GV) with only GV as free variables what will be the enabled func-
tion for those assume constructs which have both global variable as well as local
variables in it. And what about those assume constructs which have only local
variables in it, for example ull and ul4 in the running example.

Ans.We can compute the enabled function using predicate abstraction. Sup-
pose that C is the set of observable conditions, and suppose we want to compute
enabled(v) for some vertex v labeled with ”assume(phi)”. We do this by taking
the conjunction of all ¢ in C such that phi implies C (checking the implication
with an SMT solver). For example, if C is {x >= 0,y >= 0}, then

e cnabled(assume(z > 0)) =z >=0
e cnabled(assume(z >=0)) = true
e cnabled(assume(z >=0Ay >=2)) =y >=0

As a result of this, assume statements that refer only to local variable typically
have an enabling condition of ”true”. The only case where this is not the case
is something like enabled(assume(local > local)) for which it is false.

Q. It is clear that the assume constructs only referring to local variables will
have enabling condition as true but what about assume of the form (global >
local)? As said in your reply to the previous question, Its enabled condition is
conjunction of all ¢ in C(Observable Predicates) such that global > local — N;¢;.
If we do not use the annotation ¢ to get the abstraction about the local variables
at this point(which means assertion on local vars) how can SMT solver be used



to check for the satisfiability of above formula? or is it the case that local vars
are made universally quantified in the formula (global > local) and then SMT
solver is used?

Ans.Yes, that’s right - the local variables are (implicitly) existentially quan-
tified. As you suggested, a more precise way to do this would be to use the
annotation ¢ to add information about the local variables (which would still
be existentially quantified, but we’'d have more information about them). The
procedure is sound without using the annotation, however.

Q. There is a statement used in 2-3 places where observable conditions and ob-
servable formula are defined. 'that is as strong as any other observable formula
with that property’; I am not sure I understand its meaning and the conse-
quence fully. For example in the definition of enabled(v) and ¢#(v) in section
4, paragraph 3 and 4.

Ans.In the terminology of abstract interpretation, this just means that we want
the best abstraction of something in the domain of observable formulae. It can
be computed as I suggested above (taking the conjunction of all ¢ in C such
that phi implies C (checking the implication with an SMT solver)). For exam-
ple, suppose that C is {x >= 0,z <= 0}, and we want to compute an observable
formula that is implied by "z = 0”. There are four choices for this:

e true
e z>=0
e r <=0

e r >=0Nx <=0

We use the phrase ”as strong as any other observable formula with that prop-
erty” to ensure that we pick the last one.

Q. mod set of an assume construct contains every variable and as is mentioned
it is to make sure that data flows to condition before flowing further to the en-
closing block (in if else/while case). I believe that the transition function for
assume is going to be identity relation because it ’actually’ never modifies any
variable. am I Correct? Further, I assume that in subsequent iterations (after
finishing sequential DFG analysis) it is mainly enabled function which controls
if any statement after an assume construct is going to be reachable (coreach-
able/mayreach) or not. For example, the fact that enabled(v4)=counter > 0
and t# (u10)=counter = 0 is the reason that mayReach(u10, x,v4,v5) does not
hold and therefore no data flow edge is added from ulO to v5.

But the same inference (why no edge exist from ul0 to v5) can also be
obtained by considering that assume(counter > 0) has counter in its mod set
and therefore the path from ul0 to v5 is not added. This is the argument used
in section 5 (before theorem 5.2) to argue why no edge is between ul0 to v5.
But I think that the argument that ¢(u10) Aenabled(v4) do not have a satisfying
assignment (counter = 0 A counter > 0) seems to be more ’correct’ reason of
not having an edge between ul0 and v5.

Ans.The transition relation for an assume is a *partial® identity relation (it
doesn’t change the values of any variables, but it might block/have no successors
on some states). The paragraph just before section 3 gives a formal definition.



For your ul0/v5 example, it is not enough for counter to be in the mod set of
" assume(counter > 0)” to prove that absence of data flow. Consider the trace:
ul u2 u8 u9 vl v4 ull0 vb

This trace witnesses the data flow w10 —
because t# (u9) A enabled(v4) is unsatisfiable.

It’s also not enough for enabled(v4) to be incompatible with +# (u10). Con-
sider the trace
ul u2 u9 u9 ulld ul4d uld vl v4 vb

This trace is i-feasible (since (7 (u15) is just ”true”), but it doesn’t witness
the data flow u10 —¢°4"€" p5 because counter is in the mod set of v4.

So: both the way that we treat "mod” for assume and the way we handle
synchronization are required in order to prove the assertion at v6.

counter 5 hut it’s i-infeasible

Q. Consider the following example program running two threads,
{true}lalx :=0 {true}blz :=1

|

{z = 0}[classume(xz >=1) {x = 1}[d]skip

with inductive assertions ¢ attached to them (after sequential analysis). Is the
trace (0,a)(1,b)(0,c) an t-feasible trace with respect to this ¢ or not? If it is an
t-feasible trace then does it witness the edge b —% ¢?

Ans.It is not (-feasible. However, the trace (0,a)(1,b) is -feasible and witnesses
the data flow b =% c. Further, (endloc((0,a)(1,b),0) is c.

To be a little more formal, paths are sequence of actions, and each action
consists of a thread ID and a control flow edge. So the path (0,a)(1,b) should
really be written as (0,(a,c))(1,(b,d)), which makes it a little more clear that
the end location of thread 0 should be c.



