Outline

Background

Iterative program analysis
Abstract interpretation
Intraprocedural analysis
Overview
Path expressions
Compositional Recurrence Analysis Proving soundness

Interprocedural analysis
Functional approach
Newtonian program analysis
Newtonian program analysis via tensor product
Newtonian program analysis and Gauss-Jordan elimination

Algebraic program analysis

Consists of:
(1) Semantic algebra $\mathcal{D}=\langle D, \otimes, \oplus, *, 0,1\rangle$

- D : Space of program properties
- $\otimes: D \times D \rightarrow D$: sequencing operator
- $\oplus: D \times D \rightarrow D$: choice operator
- *: $D \rightarrow D$: iteration operator
- $0,1 \in D$: unit of \oplus, \otimes respectively
(2) Semantic function $\mathcal{D} \llbracket \rrbracket:$ Edge $\rightarrow D$

Algebraic program analysis

Consists of:
(1) Semantic algebra $\mathcal{D}=\langle D, \otimes, \oplus, *, 0,1\rangle$

- D : Space of program properties
- $\otimes: D \times D \rightarrow D$: sequencing operator
- $\oplus: D \times D \rightarrow D$: choice operator
- * : $D \rightarrow D$: iteration operator
- $0,1 \in D$: unit of \oplus, \otimes respectively
(2) Semantic.function $\mathcal{D} \llbracket \rrbracket:$ Edge $\rightarrow D$
L : Space of program properties
$\sqsubseteq \subseteq L \times L$: approximation order
$\sqcup: L \times L \rightarrow L$: join operator
$\nabla: L \times L \rightarrow L$: widening operator
$\perp \in L$: least element
$\mathcal{L} \llbracket \cdot \rrbracket:$ Edge $\rightarrow(L \rightarrow L)$

Algebraic program analysis

Consists of:
(1) Semantic algebra $\mathcal{D}=\langle D, \otimes, \oplus, *, 0,1\rangle$

- D : Space of program properties
- $\otimes: D \times D \rightarrow D$: sequencing operator
- $\oplus: D \times D \rightarrow D$: choice operator
- * : $D \rightarrow D$: iteration operator
- $0,1 \in D$: unit of \oplus, \otimes respectively
(2) Semantic function $\mathcal{D} \llbracket \cdot \rrbracket:$ Edge $\rightarrow D$

Effective denotational semantics: compute the "meaning" of a program by evaluating its syntax in a semantic algebra

$$
\begin{aligned}
\mathcal{D} \llbracket S_{1} ; S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \otimes \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket \mathbf{i f}(*)\left\{S_{1}\right\} \mathbf{e l s e}\left\{S_{2}\right\} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \oplus \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket \text { while }(*)\{S\} \rrbracket & =(\mathcal{D} \llbracket P \rrbracket)^{*}
\end{aligned}
$$

Reaching definitions analysis

If a control flow edge e is an assignment $\mathrm{x}:=t$, then we say that e is a definition that defines x.

A definition e of a variable \times reaches a vertex v if there exists a path from the root to v of the form:

Iterative reaching definitions:

- $L \triangleq 2^{\text {Def }}$
- $\mathcal{L} \llbracket e: x:=t \rrbracket(R) \triangleq\left(R \backslash\left\{e^{\prime}: e^{\prime}\right.\right.$ defines x$\left.\}\right) \cup\{e\}$
- $R_{1} \sqsubseteq R_{2} \Longleftrightarrow R_{1} \subseteq R_{2}$
- $R_{1} \sqcup R_{2} \triangleq R_{1} \cup R_{2}$
- $R_{1} \nabla R_{2} \triangleq R_{1} \cup R_{2}$
- $\perp \triangleq \emptyset$

Iterative reaching definitions:

- $L \triangleq 2^{\text {Def }}$
- $\mathcal{L} \llbracket e: x:=t \rrbracket(R) \triangleq\left(R \backslash\left\{e^{\prime}: e^{\prime}\right.\right.$ defines x$\left.\}\right) \cup\{e\}$
- $R_{1} \sqsubseteq R_{2} \Longleftrightarrow R_{1} \subseteq R_{2}$
- $R_{1} \sqcup R_{2} \triangleq R_{1} \cup R_{2}$
- $R_{1} \nabla R_{2} \triangleq R_{1} \cup R_{2}$
- $\perp \triangleq \emptyset$

Algebraic reaching definitions :

- $D=\left(2^{\text {Def }}\right) \times\left(2^{\text {Def }}\right)$
- $\mathcal{D} \llbracket e: x:=t \rrbracket \triangleq\left(\{e\},\left\{e^{\prime}: e^{\prime}\right.\right.$ defines x$\left.\}\right)$

Iterative reaching definitions:

```
- \(L \triangleq 2^{\text {Def }}\)
- \(\mathcal{L} \llbracket e: x:=t \rrbracket(R) \triangleq\left(R \backslash\left\{e^{\prime}: e^{\prime}\right.\right.\) defines x\(\left.\}\right) \cup\{e\}\)
- \(R_{1} \sqsubseteq R_{2} \Longleftrightarrow R_{1} \subseteq R_{2}\)
- \(R_{1} \sqcup R_{2} \triangleq R_{1} \cup R_{2}\)
- \(R_{1} \nabla R_{2} \triangleq R_{1} \cup R_{2}\)
- \(\perp \triangleq \emptyset\)
```

Algebraic reaching definitions :

- $D=\left(2^{\text {Def }}\right) \times\left(2^{\text {Def }}\right)$
- $\mathcal{D} \llbracket e: x:=t \rrbracket \triangleq\left(\{e\},\left\{e^{\prime}: e^{\prime}\right.\right.$ defines x$\left.\}\right)$
- $\left(G_{1}, K_{1}\right) \otimes\left(G_{2}, K_{2}\right) \triangleq\left(\left(G_{1} \backslash K_{2}\right) \cup G_{2},\left(K_{1} \backslash G_{2}\right) \cup K_{2}\right)$

Iterative reaching definitions:

```
- \(L \triangleq 2^{\text {Def }}\)
- \(\mathcal{L} \llbracket e: x:=t \rrbracket(R) \triangleq\left(R \backslash\left\{e^{\prime}: e^{\prime}\right.\right.\) defines x\(\left.\}\right) \cup\{e\}\)
- \(R_{1} \sqsubseteq R_{2} \Longleftrightarrow R_{1} \subseteq R_{2}\)
- \(R_{1} \sqcup R_{2} \triangleq R_{1} \cup R_{2}\)
- \(R_{1} \nabla R_{2} \triangleq R_{1} \cup R_{2}\)
- \(\perp \triangleq \emptyset\)
```

Algebraic reaching definitions :

- $D=\left(2^{\text {Def }}\right) \times\left(2^{\text {Def }}\right)$
- $\mathcal{D} \llbracket e: x:=t \rrbracket \triangleq\left(\{e\},\left\{e^{\prime}: e^{\prime}\right.\right.$ defines x$\left.\}\right)$
- $\left(G_{1}, K_{1}\right) \otimes\left(G_{2}, K_{2}\right) \triangleq\left(\left(G_{1} \backslash K_{2}\right) \cup G_{2},\left(K_{1} \backslash G_{2}\right) \cup K_{2}\right)$
- $\left(G_{1}, K_{1}\right) \oplus\left(G_{2}, K_{2}\right) \triangleq\left(G_{1} \cup G_{2}, K_{1} \cap K_{2}\right)$

Iterative reaching definitions:

```
- \(L \triangleq 2^{\text {Def }}\)
- \(\mathcal{L} \llbracket e: x:=t \rrbracket(R) \triangleq\left(R \backslash\left\{e^{\prime}: e^{\prime}\right.\right.\) defines \(\left.\left.\mathbf{x}\right\}\right) \cup\{e\}\)
- \(R_{1} \sqsubseteq R_{2} \Longleftrightarrow R_{1} \subseteq R_{2}\)
- \(R_{1} \sqcup R_{2} \triangleq R_{1} \cup R_{2}\)
- \(R_{1} \nabla R_{2} \triangleq R_{1} \cup R_{2}\)
- \(\perp \triangleq \emptyset\)
```

Algebraic reaching definitions :

$$
\begin{aligned}
& \text { - } D=\left(2^{\text {Def }}\right) \times\left(2^{\text {Def }}\right) \\
& \text { - } \mathcal{D} \llbracket e: x:=t \rrbracket \triangleq\left(\{e\},\left\{e^{\prime}: e^{\prime} \text { defines } x\right\}\right) \\
& \text { - }\left(G_{1}, K_{1}\right) \otimes\left(G_{2}, K_{2}\right) \triangleq\left(\left(G_{1} \backslash K_{2}\right) \cup G_{2},\left(K_{1} \backslash G_{2}\right) \cup K_{2}\right) \\
& \text { - }\left(G_{1}, K_{1}\right) \oplus\left(G_{2}, K_{2}\right) \triangleq\left(G_{1} \cup G_{2}, K_{1} \cap K_{2}\right) \\
& \text { - }(G, K)^{*} \triangleq(G, \emptyset)
\end{aligned}
$$

$$
\begin{aligned}
& \text { while(*) \{ } \\
& \text { if }(*)\{ \\
& \mathrm{x}:=1 \text {; } \\
& y \text { := 1; } \\
& \text { \} else \{ } \\
& y_{2}: \quad \text { y }:=2 \text {; } \\
& \text { \} } \\
& \text { \} } \\
& x_{0}: \mathbf{x}:=0 \text {; }
\end{aligned}
$$

```
    while(*){
        if (*){
x :
y1: y := 1; } ({\mp@subsup{y}{1}{}},{\mp@subsup{y}{1}{},\mp@subsup{y}{2}{}})
    } else {
y2: y := 2;
    }
    }
x0: x := 0;
```

$$
\begin{aligned}
& \text { while(*) \{ } \\
& \text { if }(*) \text { \{ } \\
& x_{1} \text { : } \\
& y_{1} \text { : } \\
& \left.\begin{array}{l}
\mathbf{x}:=1 ; \\
\mathbf{y}:=1 ;
\end{array}\right\}\left(\left\{x_{1}, y_{1}\right\},\left\{x_{1}, x_{0}, y_{1}, y_{2}\right\}\right) \\
& \text { \} else \{ } \\
& y_{2}: \quad y \quad:=2 \text {; } \\
& \text { \} } \\
& \text { \} } \\
& x_{0}: \mathbf{x}:=0 \text {; }
\end{aligned}
$$

```
    while(*){
        if(*){
x1:
y1:
y2: y := 2; } ({\mp@subsup{y}{2}{}},{\mp@subsup{y}{1}{},\mp@subsup{y}{2}{}})
    }
    }
x0: x := 0;
```

$$
\begin{aligned}
& \text { while(*) \{ } \\
& \text { if }(*) \text { \{ } \\
& x:=1 \text {; } \\
& y_{1}: \quad y \quad:=1 \text {; } \\
& \begin{array}{r}
\} \text { else }\{ \\
y:=2 ;
\end{array} \\
& \text { \} } \\
& \text { \} } \\
& x_{0}: \mathbf{x}:=0 \text {; }
\end{aligned}
$$

Outline

Background
Iterative program analysis
Abstract interpretation
Intraprocedural analysis
Overview

Path expressions

Compositional Recurrence Analysis
Proving soundness
Interprocedural analysis
Functional approach
Newtonian program analysis
Newtonian program analysis via tensor product
Newtonian program analysis and Gauss-Jordan elimination

Path expressions [Tarjan '81]

Let $G=\langle$ Loc, Edge, root \rangle be a control flow graph.
A path expression of G is a regular expression E over the alphabet Edge such that each word recognized by E corresponds to a path in G.

$$
E, F \in \operatorname{Reg} \operatorname{Exp}(G)::=e \in \operatorname{Edge}|E+F| E F\left|E^{*}\right| 0 \mid 1
$$

Path expressions [Tarjan '81]

Let $G=\langle$ Loc, Edge, root \rangle be a control flow graph.
A path expression of G is a regular expression E over the alphabet Edge such that each word recognized by E corresponds to a path in G.

$$
E, F \in \operatorname{Reg} \operatorname{Exp}(G)::=e \in \operatorname{Edge}|E+F| E F\left|E^{*}\right| 0 \mid 1
$$

If $u, v \in L o c$ are control locations, a path expression from u to v is a path expression that recognizes the set of all paths from u to v in G.

$$
\begin{array}{ll}
& x:=0 \\
& n \quad:=10 \\
& \mathrm{i}:=0 \\
\text { outer: } & \text { if }(\mathrm{i}>=\mathrm{n}): \\
& \text { goto end } \\
& \mathrm{i}:=\mathrm{i}+1 \\
\text { inner: } & \mathrm{j}:=0 \\
& \text { if }(*): \\
& \mathrm{x}:=\mathrm{x}+1 \\
& \mathrm{j}:=\mathrm{j}+1 \\
& \text { if }(\mathrm{j}<\mathrm{n}): \\
& \text { goto inner } \\
& \text { goto outer } \\
\text { end: } & \text { assert }(\mathrm{x}<=100)
\end{array}
$$

$x:=0$	
	$\mathrm{n}:=10$
	i : = 0
outer:	if $(i$ > n): goto end
	i := i + 1
inner:	$\mathrm{j}:=0$
	if (*) :
	$x:=x+1$
	$\mathrm{j}:=\mathrm{j}+1$
	if $(\mathrm{j}<\mathrm{n})$:
	goto inner goto outer
end:	assert (x <= 100)

	$x:=0$
	$n:=10$
	$\mathrm{i}:=0$
outer:	if $(\mathrm{i}>=\mathrm{n}):$
	goto end
	$\mathrm{i}:=\mathrm{i}+1$
inner:	$\mathrm{j}:=0$
	if $(*):$
	$\mathrm{x}:=\mathrm{x}+1$
	$\mathrm{j}:=\mathrm{j}+1$
	if $(\mathrm{j}<\mathrm{n}):$
	goto inner
goto outer	
end:	assert $(\mathrm{x}<=100)$

	$x:=0$
	$n:=10$
i $:=0$	
outer:	if $(\mathrm{i}>=\mathrm{n}):$
	goto end
	$\mathrm{i}:=\mathrm{i}+1$
inner:	$\mathrm{j}:=0$
	if $(*):$
	$\mathrm{x}:=\mathrm{x}+1$
	$\mathrm{j}:=\mathrm{j}+1$
	if $(\mathrm{j}<\mathrm{n}):$
	goto inner
	goto outer
end:	assert $(\mathrm{x}<=100)$

	$x:=0$
	$n:=10$
	$\mathrm{i}:=0$
outer:	if $(\mathrm{i}>=\mathrm{n}):$
	goto end
	$\mathrm{i}:=\mathrm{i}+1$
inner:	$\mathrm{j}:=0$
	if $(*):$
	$\mathrm{x}:=\mathrm{x}+1$
	$\mathrm{j}:=\mathrm{j}+1$
	if $(\mathrm{j}<\mathrm{n}):$
	goto inner
goto outer	
end:	assert $(\mathrm{x}<=100)$

	$x:=0$
	$n:=10$
i $:=0$	
outer:	if $(\mathrm{i}>=\mathrm{n}):$
	goto end
	$\mathrm{i}:=\mathrm{i}+1$
inner:	$\mathrm{j}:=0$
	if $(*):$
	$\mathrm{x}:=\mathrm{x}+1$
	$\mathrm{j}:=\mathrm{j}+1$
	if $(\mathrm{j}<\mathrm{n}):$
	goto inner
	goto outer
end:	assert $(\mathrm{x}<=100)$

Running an algebraic program analysis

(1) Compute a path expression from the program entry to each vertex
(2) Evaluate the path expressions in the semantic algebra defining the analysis.

$$
\begin{aligned}
\mathcal{D} \llbracket S_{1} S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \otimes \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket S_{1}+S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \oplus \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket S^{*} \rrbracket & =(\mathcal{D} \llbracket P \rrbracket)^{*}
\end{aligned}
$$

Running an algebraic program analysis

(1) Compute a path expression from the program entry to each vertex
(2) Evaluate the path expressions in the semantic algebra defining the analysis.

$$
\begin{aligned}
\mathcal{D} \llbracket S_{1} S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \otimes \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket S_{1}+S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \oplus \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket S^{*} \rrbracket & =(\mathcal{D} \llbracket P \rrbracket)^{*}
\end{aligned}
$$

Tarjan's algorithm [Tarjan '81]: do both steps \& avoid repeated work

Running an algebraic program analysis

(1) Compute a path expression from the program entry to each vertex
(2) Evaluate the path expressions in the semantic algebra defining the analysis.

$$
\begin{aligned}
\mathcal{D} \llbracket S_{1} S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \otimes \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket S_{1}+S_{2} \rrbracket & =\mathcal{D} \llbracket S_{1} \rrbracket \oplus \mathcal{D} \llbracket S_{2} \rrbracket \\
\mathcal{D} \llbracket S^{*} \rrbracket & =(\mathcal{D} \llbracket P \rrbracket)^{*}
\end{aligned}
$$

Tarjan's algorithm [Tarjan '81]: do both steps \& avoid repeated work
More path-expression/elimination algorithms: [Sreedhar, Gao, Lee '98], [Scholz, Blieberger '07], ...

Outline

Background
Iterative program analysis
Abstract interpretation
Intraprocedural analysis
Overview
Path expressions
Compositional Recurrence Analysis
Proving soundness
Interprocedural analysis
Functional approach
Newtonian program analysis
Newtonian program analysis via tensor product
Newtonian program analysis and Gauss-Jordan elimination

WISCONSIN

Compositional Recurrence Analysis (CRA) [Farzan \& Kincaid '15]

- D : set of arithmetic transition formulas

$$
\mathcal{D} \llbracket x:=x+1 \rrbracket \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge n^{\prime}=n
$$

Compositional Recurrence Analysis (CRA) [Farzan \& Kincaid '15]

- D : set of arithmetic transition formulas

$$
\mathcal{D} \llbracket x:=x+1 \rrbracket \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge n^{\prime}=n
$$

- $\varphi \otimes \psi \triangleq \exists \mathbf{x}^{\prime \prime} . \varphi\left[\mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \prime}\right] \wedge \psi\left[\mathbf{x} \mapsto \mathbf{x}^{\prime \prime}\right]$

Compositional Recurrence Analysis (CRA) [Farzan \& Kincaid '15]

- D : set of arithmetic transition formulas

$$
\mathcal{D} \llbracket x:=x+1 \rrbracket \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge n^{\prime}=n
$$

- $\varphi \otimes \psi \triangleq \exists \mathbf{x}^{\prime \prime} . \varphi\left[\mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \prime}\right] \wedge \psi\left[\mathbf{x} \mapsto \mathbf{x}^{\prime \prime}\right]$
- $\varphi \oplus \psi \triangleq \varphi \vee \psi$

Compositional Recurrence Analysis (CRA) [Farzan \& Kincaid '15]

- D : set of arithmetic transition formulas

$$
\mathcal{D} \llbracket x:=x+1 \rrbracket \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge n^{\prime}=n
$$

- $\varphi \otimes \psi \triangleq \exists \mathbf{x}^{\prime \prime} . \varphi\left[\mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \prime}\right] \wedge \psi\left[\mathbf{x} \mapsto \mathbf{x}^{\prime \prime}\right]$
- $\varphi \oplus \psi \triangleq \varphi \vee \psi$
- $\varphi^{*} \triangleq \ldots$

CRA's iteration operator

while (i<n):
if (*) :

$$
x:=x+i
$$

else

$$
y:=y+i
$$

i := i + 1

$$
\exists k . k \geq 0 \wedge \mathrm{i}^{\prime}=\mathrm{i}+k \wedge \mathrm{x}^{\prime}+\mathrm{y}^{\prime}=\mathrm{x}+\mathrm{y}+k(k+1) / 2+k \mathrm{i}_{0} \wedge \mathrm{x}^{\prime} \geq \mathrm{x} \wedge \mathrm{y}^{\prime} \geq \mathrm{y}
$$

CRA's iteration operator

```
while (i<n):
    if (*):
        \(x:=x+i\)
    else
```

 \(y:=y+i\)
 i := i + 1
 $\begin{aligned} & \\ & \mathrm{i}^{(k)}=\mathrm{i}^{(k-1)}+1 \\ & \mathrm{x}^{(k)}+\mathrm{y}^{(k)}=\mathrm{x}^{(k-1)}+\mathrm{y}^{(k-1)}+\mathrm{i} \\ & \mathrm{x}^{(k)} \geq \mathrm{x}^{(k-1)} \\ & \mathrm{y}^{(k)} \geq \mathrm{y}^{(k-1)} \\ & \mathrm{n}\end{aligned}$

CRA's iteration operator

$$
\begin{aligned}
& \text { while (i<n): } \\
& \text { if (} * \text {) : } \\
& x:=x+i \\
& \text { else } \\
& y:=y+i
\end{aligned}
$$

Non-Linear Reasoning For Invariant Synthesis with Jason Breck, John Cyphert, and Thomas Reps

 January 12, 2018 @ 15:50, Program Analysis II session.
Outline

Background
Iterative program analysis
Abstract interpretation
Intraprocedural analysis
Overview
Path expressions
Compositional Recurrence Analysis

Proving soundness

Interprocedural analysis
Functional approach
Newtonian program analysis
Newtonian program analysis via tensor product
Newtonian program analysis and Gauss-Jordan elimination

Relational interpretation

- $D^{\natural} \triangleq 2^{\text {Store } \times \text { Store }}:$ set of transition relations
- $R \otimes S \triangleq\left\{\left(s, s^{\prime \prime}\right): \exists s^{\prime} .\left(s, s^{\prime}\right) \in R \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in S\right\}$ is relational composition
- $R \oplus S \triangleq R \cup S$
- $R^{*} \triangleq$ reflexive, transitive closure of R
- $0 \triangleq \emptyset$
- $1 \triangleq\{\langle s, s\rangle: s \in$ Store $\}$
- $\mathcal{D}^{\mathrm{h}} \llbracket e \rrbracket \triangleq\left\{\left(s, s^{\prime}\right): s \xrightarrow{e} s^{\prime}\right\}$

Soundness relations

Given concrete \& abstract semantic algebras:

$$
\begin{aligned}
& \mathcal{D}^{\natural}=\left\langle D^{\natural}, \otimes^{\natural}, \oplus^{\natural}, *^{\natural}, 0^{\natural}, 1^{\natural}\right\rangle \\
& \mathcal{D}^{\sharp}=\left\langle D^{\sharp}, \otimes^{\sharp}, \oplus^{\sharp}, *^{\sharp}, 0^{\sharp}, 1^{\sharp}\right\rangle
\end{aligned}
$$

A soundness relation is a relation $\Vdash \subseteq D^{\natural} \times D^{\sharp}$ such that $0^{\natural} \Vdash 0^{\sharp}$, $1^{\natural} \Vdash 1^{\sharp}$, and

For all

$$
\begin{aligned}
& c_{1}, c_{2} \in D^{\natural} \\
& a_{1}, a_{2} \in D^{\sharp}
\end{aligned}
$$

such that

$$
\begin{aligned}
& c_{1} \Vdash a_{1} \\
& c_{2} \Vdash a_{2}
\end{aligned}
$$

Then:

- $c_{1} \otimes^{\sharp} c_{2} \Vdash a_{1} \otimes^{\sharp} a_{2}$
- $c_{1} \oplus^{\natural} c_{2} \Vdash a_{1} \oplus^{\sharp} a_{2}$
- $c_{1}^{*^{\natural}} \Vdash a_{1}^{*^{\#}}$
(i.e., \Vdash is a sub-algebra of the direct product $D^{\natural} \times D^{\sharp}$).

Soundness relations

Given concrete \& abstract semantic algebras:

$$
\begin{aligned}
& \mathcal{D}^{\natural}=\left\langle D^{\natural}, \otimes^{\natural}, \oplus^{\natural}, *^{\natural}, 0^{\natural}, 1^{\natural}\right\rangle \\
& \mathcal{D}^{\sharp}=\left\langle D^{\sharp}, \otimes^{\sharp}, \oplus^{\sharp}, *^{\sharp}, 0^{\sharp}, 1^{\sharp}\right\rangle
\end{aligned}
$$

A soundness relation is a relation $\Vdash \subseteq D^{\natural} \times D^{\sharp}$ such that $0^{\natural} \Vdash 0^{\sharp}$, $1^{\natural} \Vdash 1^{\#}$, and

For all

$$
\begin{aligned}
& c_{1}, c_{2} \in D^{\sharp} \\
& a_{1}, a_{0} \in D^{\sharp}
\end{aligned}
$$

- $c_{1} \otimes^{\natural} c_{2} \Vdash a_{1} \otimes^{\sharp} a_{2}$

$$
\begin{aligned}
& \text { If } \forall e \in \text { Edge, } \mathcal{D}^{\natural} \llbracket e \rrbracket \Vdash \mathcal{D}^{\sharp} \llbracket e \rrbracket \text {, then } \\
& \forall \text { path expressions } E: \mathcal{D}^{\natural} \llbracket E \rrbracket \Vdash \mathcal{D}^{\sharp} \llbracket E \rrbracket \text {. }
\end{aligned}
$$

CRA simulates relational interpretation

$R \Vdash \varphi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ iff $\forall\left(s, s^{\prime}\right) \in R . \varphi\left[\mathbf{x} \mapsto s(\mathbf{x}), \mathbf{x}^{\prime} \mapsto s^{\prime}(\mathbf{x})\right]$ holds

CRA simulates relational interpretation

$R \Vdash \varphi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ iff $\forall\left(s, s^{\prime}\right) \in R . \varphi\left[\mathbf{x} \mapsto s(\mathbf{x}), \mathbf{x}^{\prime} \mapsto s^{\prime}(\mathbf{x})\right]$ holds
For all
R, S transition relations
φ, ψ transition formulas
such that $\quad R \Vdash \varphi \quad S \Vdash \psi$
Then:

- $\left\{\left(s, s^{\prime \prime}\right): \exists s^{\prime} .\left(s, s^{\prime}\right) \in R \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in S\right\} \Vdash \exists \mathbf{x}^{\prime \prime} . \varphi\left[\mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \prime}\right] \wedge \psi\left[\mathbf{x} \mapsto \mathbf{x}^{\prime \prime}\right]$
- $R \cup S \Vdash \varphi \vee \psi$

WISCONSSIN

CRA simulates relational interpretation

$R \Vdash \varphi\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ iff $\forall\left(s, s^{\prime}\right) \in R . \varphi\left[\mathbf{x} \mapsto s(\mathbf{x}), \mathbf{x}^{\prime} \mapsto s^{\prime}(\mathbf{x})\right]$ holds
For all
R, S transition relations
φ, ψ transition formulas
such that $\quad R \Vdash \varphi \quad S \Vdash \psi$
Then:

- $\left\{\left(s, s^{\prime \prime}\right): \exists s^{\prime} .\left(s, s^{\prime}\right) \in R \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in S\right\} \Vdash \exists \mathbf{x}^{\prime \prime} . \varphi\left[\mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \prime}\right] \wedge \psi\left[\mathbf{x} \mapsto \mathbf{x}^{\prime \prime}\right]$
- $R \cup S \Vdash \varphi \vee \psi$
- $R^{* \natural} \Vdash \varphi^{* \sharp}$

Algebraic laws

$\langle D, \oplus, \otimes, 0,1\rangle$ is a idempotent semiring:

- \oplus is associative, commutative, and idempotent, and has identity 0

$$
\begin{array}{rlr}
a \oplus(b \oplus c) & =(a \oplus b) \oplus c & \text { Associative } \\
a \oplus b & =b \oplus a & \text { Commutative } \\
a \oplus a & =a & \text { Idempotent } \\
a \oplus 0 & =a & \text { Identity }
\end{array}
$$

- \otimes is associative and has 1 as identity and 0 as annihilator

$$
\begin{array}{rlr}
a \otimes(b \otimes c) & =(a \otimes b) \otimes c & \text { Associative } \\
a \otimes 1 & =1 \otimes a=a & \text { Identity } \\
0 \otimes a & =a \otimes 0=0 & \text { Annihilation }
\end{array}
$$

- \otimes distributes over $\oplus: a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$

Iteration axioms

Write $a \leq b$ iff $a \oplus b=b$.

Iteration axioms

Write $a \leq b$ iff $a \oplus b=b$.
$\langle D, \oplus, \otimes, *, 0,1\rangle$ is a Kleene algebra: idempotent semiring +
(1) $1 \leq a^{*}$
(2) $a \otimes\left(a^{*}\right) \leq a^{*}$
(3) $\left(a^{*}\right) \otimes a \leq a^{*}$
(4) for all $x, a \otimes x \leq x \Rightarrow\left(a^{*}\right) \otimes x \leq x$
(5) for all $x, x \otimes a \leq x \Rightarrow x \otimes\left(a^{*}\right) \leq x$
(i.e., a^{*} is least fixed point of $X=1+a X$ and $X=1+X a$)

Iteration axioms

Write $a \leq b$ iff $a \oplus b=b$.
$\langle D, \oplus, \otimes, *, 0,1\rangle$ is a Kleene algebra: idempotent semiring +
(1) $1 \leq a^{*}$
(2) $a \otimes\left(a^{*}\right) \leq a^{*}$
(3) $\left(a^{*}\right) \otimes a \leq a^{*}$
(4) for all $x, a \otimes x \leq x \Rightarrow\left(a^{*}\right) \otimes x \leq x$
(5) for all $x, x \otimes a \leq x \Rightarrow x \otimes\left(a^{*}\right) \leq x$
(i.e., a^{*} is least fixed point of $X=1+a X$ and $X=1+X a$) $\langle D, \equiv, \oplus, \otimes, *, 0,1\rangle$ is a quasi weight domain:

- replace $=$ with some equivalence relation \equiv
- relax requirement that a^{*} is a least fixed point (axioms $4 \& 5$)

Consequences of algebraic laws

- \mathcal{D} is a Kleene algebra: choice of path expression algorithm is irrelevant.

Consequences of algebraic laws

- \mathcal{D} is a Kleene algebra: choice of path expression algorithm is irrelevant.
- \mathcal{D} is a quasi-weight domain: For any path expression E, for any path w recognized by E we have $\mathcal{D}^{\sharp} \llbracket w \rrbracket \leq \mathcal{D}^{\sharp} \llbracket E \rrbracket$

Consequences of algebraic laws

- \mathcal{D} is a Kleene algebra: choice of path expression algorithm is irrelevant.
- \mathcal{D} is a quasi-weight domain: For any path expression E, for any path w recognized by E we have $\mathcal{D}^{\sharp} \llbracket w \rrbracket \leq \mathcal{D}^{\sharp} \llbracket E \rrbracket$
- If \mathcal{D}^{\natural} is a Kleene algebra and \mathcal{D}^{\sharp} is a quasi-weight domain, then $c_{1}^{* \natural} \Vdash a_{1}^{*^{\sharp}}$ follows from the rest of the conditions on a soundness relation.

Designing an algebraic analysis

(1) Define:

- Semantic algebra $\mathcal{D}=\langle D, \otimes, \oplus, *, 0,1\rangle$
- Semantic function $\mathcal{D}^{\sharp} \llbracket \cdot \rrbracket:$ Edge $\rightarrow D$
(2) Apply: Tarjan's path expression algorithm

Proving soundness

(1) Define:

- Concrete semantics
- Relation $1 \vdash$
(2) Prove:
- I is a soundness relation
- soundness of atomic interpretations: $\forall e, \mathcal{D}^{\natural} \llbracket e \rrbracket \Vdash \mathcal{D}^{\sharp} \llbracket e \rrbracket$
(3) Apply theorem: If \Vdash is a soundness relation and $\mathcal{D}^{\natural} \llbracket e \rrbracket \Vdash \mathcal{D}^{\sharp} \llbracket e \rrbracket$ for all edges e, then path expression algorithm computes properties that are sound w.r.t. concrete semantics.

Iterative vs. algebraic program analysis

Iterative Framework	Algebraic Framework
Join semi-lattice	Semantic Algebra
Abstract transformers	Semantic function
Chaotic iteration algorithm	Path-expression algorithm
Concretization function	Soundness relation

Iterative vs. algebraic program analysis

Iterative Framework	Algebraic Framework
Join semi-lattice	Semantic Algebra
Abstract transformers	Semantic function
Chaotic iteration algorithm	Path-expression algorithm
Concretization function	Soundness relation

Key point: loop analysis is internal to an algebraic program analysis.

