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HARDNESS-RANDOMNESS TRADEOFFS FOR BOUNDED DEPTH
ARITHMETIC CIRCUITS∗

ZEEV DVIR† , AMIR SHPILKA‡ , AND AMIR YEHUDAYOFF†

Abstract. In this paper we show that lower bounds for bounded depth arithmetic circuits imply
derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally,
if there exists an explicit polynomial f that cannot be computed by a depth d arithmetic circuit of
small size, then there exists an efficient deterministic black-box algorithm to test whether a given
depth d−5 circuit that computes a polynomial of relatively small individual degrees is identically zero
or not. In particular, if we are guaranteed that the tested circuit computes a multilinear polynomial,
then we can perform the identity test efficiently. To the best of our knowledge this is the first
hardness-randomness tradeoff for bounded depth arithmetic circuits. The above results are obtained
using the arithmetic Nisan–Wigderson generator of Kabanets and Impagliazzo together with a new
theorem on bounded depth circuits, which is the main technical contribution of our work. This
theorem deals with polynomial equations of the form P (x1, . . . , xn, y) ≡ 0 and shows that if P has a
circuit of depth d and size s and if the polynomial f(x1, . . . , xn) satisfies P (x1, . . . , xn, f) ≡ 0, then f
has a circuit of depth d+ 3 and size poly(s, mr), where m is the total degree of f and r is the degree
of y in P . This circuit for f can be found probabilistically in time poly(s, mr). In the other direction
we observe that the methods of Kabanets and Impagliazzo can be used to show that derandomizing
identity testing for bounded depth circuits implies lower bounds for the same class of circuits. More
formally, if we can derandomize polynomial identity testing for bounded depth circuits, then NEXP
does not have bounded depth arithmetic circuits. That is, either NEXP �⊆ P/poly or the Permanent
is not computable by polynomial size bounded depth arithmetic circuits.

Key words. polynomial identity testing, derandomization, polynomial factoring, hardness,
randomness

AMS subject classifications. 68Q17, 68W20, 12Y05

DOI. 10.1137/080735850

1. Introduction. The role of randomness in computation is a fundamental ques-
tion in complexity theory. Phrased in its most general terms it asks, Do we really need
random bits to do that? where “that” can be a probabilistic algorithm, interactive
protocol, cryptographic application, etc. When asking this question in the setting of
probabilistic polynomial time algorithms, we are actually asking whether BPP=P. In
recent years there have been many works giving strong evidence that indeed BPP=P
in the form of hardness-randomness tradeoffs. These results prove that BPP=P (or
some weaker collapse) under the hypothesis that there exist “explicit” boolean func-
tions that cannot be computed/approximated using small circuits. Since we believe
that hard functions exist, we also believe that BPP=P. A partial list of references on
this topic includes [NW94, IW97, STV01, ISW01, SU05].
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One of the most natural problems in BPP is the problem of polynomial identity
testing (PIT) (in fact, PIT belongs to the class coRP ⊆ BPP). In this problem we are
given as input a polynomial, represented in some succinct form (say, by an arithmetic
circuit or formula), and we are asked whether it is the identically zero polynomial.1

Using the well-known Schwartz–Zippel lemma [Sch80, Zip79] it is known that evaluat-
ing the polynomial at a random point, chosen from a sufficiently large set, is enough in
order to determine, with high probability of success, whether the polynomial is iden-
tically zero or not. The main question is whether there is an efficient deterministic
algorithm for PIT. This problem is considered as one of the central problems in the
field of derandomization, partially due to the large number of algorithmic problems
that reduce to it (see [AB03, AKS04, Lov79, MVV87, CRS95, LV98]).

In [KI04] Kabanets and Impagliazzo showed that the PIT problem described
above can be derandomized if we assume that there exists an explicit polynomial
(say, the Permanent) that cannot be computed using a small arithmetic circuit. This
result is purely arithmetic and does not follow from previous works on boolean deran-
domization. The two main technical tools used to prove this result are an arithmetic
version of the Nisan–Wigderson generator [NW94] and the polynomial factorization
algorithm of Kaltofen [Kal89]. It should be mentioned here that the “main” result
of [KI04] was actually a theorem in the other direction: derandomizing PIT implies
circuit lower bounds. This showed that derandomizing PIT might be more difficult
than once imagined, since it seems that we are very far from proving explicit circuit
lower bounds.

The apparent connection between PIT and circuit lower bounds suggests that it
might be beneficial to consider restricted versions of the PIT problem. A natural
restriction would be to assume that the input polynomial is given by a “simpler”
representation than a circuit (or even a formula). Since we have lower bounds for
restricted models, we might be able to solve the PIT versions for the same models.
In [GKS90, BOT88, KS01] (and many other papers) deterministic PIT algorithms
for depth 2 arithmetic circuits were given. More recently, [RS05] gave a polynomial
time PIT algorithm for noncommutative formulas. In another line of work [DS06,
KS07b, KS07a, AM07, SS09, KS09] gave PIT algorithms for depth 3 circuits with
bounded top fan-in. This should be compared to the best lower bounds for depth 3
circuits which are exponentially large over finite fields [GK98, GR00] and quadratic
for characteristic zero fields [SW01]. For depth larger than 3 and fields other than F2,
the only lower bounds are slightly superlinear [BS83, Str73, Pud94, RS05, Raz07].

In this work we consider the problem of PIT for bounded depth arithmetic cir-
cuits. Roughly speaking, we show that a circuit lower bound for bounded depth
arithmetic circuits would give an efficient deterministic PIT algorithm for bounded
depth circuits with a certain limitation on their degrees (see the section 1.1 for the
precise formulation). This is an arithmetic hardness-randomness result that further
emphasizes the connection between lower bounds and derandomization. One could
also hope that in the (near?) future we will succeed in proving lower bounds for
bounded depth arithmetic circuits and then, using this work, we would also have
unconditional deterministic PIT algorithms for circuits of the same kind.

In order to prove our results we combine an arithmetic version of the Nisan–
Wigderson generator from [KI04] together with a new theorem, Theorem 4, that
bounds the bounded depth complexity of a polynomial root y = f(x1, . . . , xn) of an

1Note that this is a syntactic requirement. In particular, the polynomial x2 − x is not the zero
polynomial although it computes the zero function over F2.
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equation P (x1, . . . , xn, y) ≡ 0 in terms of the bounded depth complexity of P (in
fact, we have a probabilistic algorithm for finding the bounded depth circuit for f).
This theorem replaces the polynomial factorization algorithm of [Kal89] in the proof
of [KI04]. We note that the methods of [Kal89] do not seem to work in the bounded
depth case since, by the sequential nature of Kaltofen’s algorithm, the circuit for the
root f(x1, . . . , xn) is always of large depth, even if P has a bounded depth circuit
(Kaltofen’s algorithm constructs a circuit for f(x1, . . . , xn) using a linear number of
steps, each step increasing the depth of the circuit by at least one; hence, it is not
clear whether the depth of the circuit can be made small).

1.1. Our results. We proceed by giving the definitions necessary to state our
results formally, starting with the formal definitions regarding arithmetic circuits. An
arithmetic circuit over the field F and the variables x1, . . . , xn is a directed acyclic
graph labeled as follows: gates of in-degree zero are labeled by either a variable or a
field element, and gates with positive in-degree are labeled by either + or ×. An edge
can be labeled by a field element. An arithmetic circuit computes a polynomial in the
obvious way, where a constant on an edge multiplies the polynomial that “enters” the
edge. The size of a circuit is the number of edges in it, and the depth of a circuit is
the length of the longest directed path in it.

We continue by defining three variants of the PIT problem. The problems are
ordered from the most general one to the most restricted one. Our results apply only
to the last (most restricted) version, but we give all three definitions in order to give
a clearer picture.

Problem 1. CPIT(F) - circuit PIT over F:
• Input: An arithmetic circuit C(x1, . . . , xn) of size poly(n) over a field F.
• Output: Does C(x) ≡ 0 ?

Problem 2. CPITd(F) - depth d circuit PIT over F:
• Input: An arithmetic circuit C(x1, . . . , xn) of size poly(n) and depth d over a

field F.
• Output: Does C(x) ≡ 0 ?

Problem 3. CPITd
r(F) - depth d circuit PIT over F for polynomials with indi-

vidual degrees at most r:
• Input: An arithmetic circuit C(x1, . . . , xn) of size poly(n) and depth d over

a field F computing a polynomial with individual degrees at most r (possibly
the zero polynomial).

• Output: Does C(x) ≡ 0 ?
We note that each of the problems can be considered either in the non black-box

setting and in the black-box setting. In the non black-box setting we are given the
arithmetic circuit, and we can use its graph of computation in order to decide whether
it computes the zero polynomial or not. In the black-box model we do not have the
circuit at our disposal, and our only access to the polynomial computed by the circuit
is via queries. In particular, a black-box PIT algorithm is none other than a hitting
set, namely, a set of points such that if the polynomial computed by the circuit is
nonzero, then it does not vanish when evaluated on the points of the hitting set. All
the PIT algorithms that we give are in the black-box model.

When considering the uniform complexity of the above problems, we restrict our
attention to finite fields and to the field of rational numbers Q. Elements in these
fields can be represented using finite bit strings, and so the standard Turing machine
model is sufficient to describe algorithms over these fields. This will save a bit on
unimportant technicalities. When working over a finite field Fpr , p prime, we will
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assume (as is done in [KI04]) that we have at our disposal an irreducible polynomial
of degree r over Fp.

Remark 1.1 (syntactic vs. semantic restrictions). The definition of CPITd
r(F)

does not contain any syntactic restrictions on the circuit C. In particular, C can have
intermediate gates computing polynomials that have individual degrees larger than r,
as long as the output has individual degrees at most r. This can be thought of as a
semantic restriction—applying only to the output of the computation.

Our PIT algorithms will assume that there exists some “explicit” polynomial that
is hard for small circuits of bounded depth. To simplify some of the proofs we will
assume that this polynomial is also multilinear. We note that this requirement is
not really needed since if we had a hard polynomial which was not multilinear, but
had, say, polynomial degree in each variable, we could easily derive from it an explicit
hard multilinear polynomial with only a polynomial deterioration in the hardness
parameters. More precisely, replacing xr

i for r > 1 with yr0
i0 · . . . · yrs

is , where (r0 . . . rs)
is the binary representation of r, gives a new multilinear polynomial in a slightly larger
number of variables. This polynomial is at least as hard as the original polynomial
which can be recovered from it by the substitution yij = x2j

i .
The following two definitions capture the notions of “explicitness” and “hardness”

necessary to formulate our results.
Definition 1.2 (explicit polynomial). Let F be a finite field or the field of

rational numbers. Let p̃ = {pm}∞m=1 be a sequence of multilinear polynomials such
that pm ∈ F[x1, . . . , xm] for each m. We say that the sequence p̃ is explicit if

1. all the coefficients of pm have size (in bits) polynomial in m;
2. there exists a Turing machine M that on input m runs in time 2O(m) and

outputs a list (of length 2m) of all the coefficients of pm(x1, . . . , xm).
Definition 1.3 (hardness against circuits). Let F be a field, and let E be an

extension field of F. Let p ∈ F[x1, . . . , xm] be some polynomial. We say that p is
(s, d, E)-hard if p cannot be computed by an arithmetic circuit of size s and depth d
over the extension field E.

The next two theorems state our main result when the underlying field is Q

(Theorem 1) and over finite fields (Theorem 2).
Theorem 1. Let d be an integer and ε > 0 a real number. Suppose there

exists an explicit sequence p̃ = {pm}∞m=1 of multilinear polynomials such that for
each m the polynomial pm belongs to Q[x1, . . . , xm] and is (2mε

, d, Q)-hard. Then the
problem CPITd′

polylog(n)(Q) can be solved deterministically (in the black-box model) in
time npolylog(n), where d′ = d − 5.

Theorem 2. Let d be an integer, ε > 0 a real number, and F a finite field.
Suppose there exists an explicit sequence p̃ = {pm}∞m=1 of multilinear polynomials such
that for each m the polynomial pm belongs to F[x1, . . . , xm] and is (2mε

, d, E)-hard for
some finite extension E of F satisfying |E| > 2m. Then the problem CPITd′

polylog(n)(F)
can be solved deterministically (in the black-box model) in time npolylog(n), where d′ =
d − 5.

Remark 1.4 (higher individual degrees). We note that if we are satisfied with
having subexponential time deterministic PIT algorithms (this would be a weaker, but
still highly interesting, derandomization result), then we can replace CPITd′

polylog(n)(F)

with CPITd′
no(1)(F) in the above theorems. This follows by making a small modification

to the proof in a similar fashion to [KI04] (we leave the details to the interested
reader).
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We observe that a converse to Theorems 1 and 2 is also true, namely, that deran-
domizing identity testing for bounded depth circuits implies circuit lower bounds for
the same model.

Theorem 3. The following three assumptions cannot be simultaneously true.
1. NEXP ⊆ P/poly;
2. Permanent is computable by polynomial size depth d arithmetic circuits over

Q;
3. CPITd(Q) is in NSUBEXP.

We stress that Theorem 3 above is a simple observation, since the same theorem
for general circuits (without depth restriction) appears in [KI04] and the proof requires
almost no modifications to hold also in the bounded depth model.

A key ingredient of our proof is the following theorem, which relates the bounded
depth complexity of a polynomial y = f(x1, . . . , xn) that satisfies P (x1, . . . , xn, y) = 0
to that of P (x, y). The theorem tells us that we can find a bounded depth circuit
for f efficiently (using randomness). The algorithmic part of the theorem is of no
importance for the hardness-randomness tradeoffs—for the tradeoffs we just need the
existence of a small bounded depth circuit for f .

Theorem 4. Let n, s, r, m, t, and d be integers such that s ≥ n. Let F be a
field which has at least 2mt elements. Let P (x1, . . . , xn, y) ∈ F[x1, . . . , xn, y] be a
nonzero polynomial with deg(P ) ≤ t and degy(P ) ≤ r such that P has an arithmetic
circuit of size s and depth d over F. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial
with deg(f) = m such that P (x1, . . . , xn, f(x1, . . . , xn)) ≡ 0. Then there exists a
probabilistic algorithm that is given as input the circuit for P , the numbers r, m, and t,
and oracle access to f , runs in time poly(s, mr), and outputs a circuit of depth2 d +3
computing f , with probability at least 2/3.

We now discuss shortly the connection between Theorem 4 and Kaltofen’s algo-
rithm for factoring polynomials. The proof of Theorem 4 actually shows that, given a
small constant depth circuit for P , there is a probabilistic algorithm for finding small
constant depth circuits for all the polynomials f that are roots of P (see the discussion
after the proof of Lemma 3.1 for more details). Kaltofen’s factorization algorithm can
also be used to output small circuits for the roots of P as well; indeed, if f is a root
of P , then (y − f) is a factor of P . Thus, Kaltofen’s algorithm solves a more general
question than the root finding problem. However, in Kaltofen’s algorithm we have no
guarantee on the depth of the circuits for the different factors, whereas Theorem 4
gives a good bound on the depth of each root. This is the main advantage of Theo-
rem 4 over Kaltofen’s algorithm. On the other hand, a drawback of Theorem 4 is the
exponential dependency on r; the bounded depth circuit we obtain for f is small only
if r is small; for example, it is of quasi-polynomial size only for poly-logarithmic r.
This blowup does not occur in Kaltofen’s algorithm; in his algorithm the circuit for f
is always polynomial. The main reason for this blowup is our insistence on constant
depth; if we did not care about the depth, we would not have this blowup (see the
proof of Lemma 3.1). We note that this blowup is the reason for the restriction on
the individual degrees in Theorems 1 and 2.

1.2. A discussion of recent results. After this paper was sent to review,
Agrawal and Vinay proved that, in order to derandomize the PIT problem for gen-
eral arithmetic circuits, it is enough to derandomize the problem for depth 4 circuits

2The bound d + 3 on the depth can be improved to d + 2 if we assume that the circuit for P
has a multiplication gate as its topmost (output) gate. It can also be improved to d + 2 if the layer
above the input gates is of + gates. If both conditions hold, then the depth is d + 1.
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[AV08]. Namely, a polynomial size hitting set for polynomial size depth 4 circuits
implies the existence of a polynomial that can be computed in PSPACE, whose arith-
metic circuit complexity is exponential. Applying the generator construction of [KI04]
on this polynomial we get an nO(log n) time PIT algorithm for general arithmetic cir-
cuits. In addition, [AV08] shows that a lower bound of the form exp(Ω(n)) for depth
4 circuits implies a similar result for general circuits. However, we note that if we
have a lower bound of the form exp(nε) for depth d circuits, then the Agrawal–Vinay
result does not yield any identity testing algorithm for bounded depth circuits or a
lower bound for general arithmetic circuits, whereas our result does.

1.3. Organization. In section 2 we give notations and preliminary claims that
will be used in later sections. Section 3 contains our main technical contribution: a
“root finding” theorem for bounded depth circuits. Finally, in section 4 we use this
theorem to prove Theorems 1 and 2. A sketch of the proof of Theorem 3 is given in
section 5.

2. Preliminaries.

2.1. Notations. We denote [n] = {1, . . . , n}. Let p ∈ F[x1, . . . , xn] be a polyno-
mial. We write deg(p) for the total degree of p and degxi

(p) for the individual degree
of p in the variable xi. We sometimes write p(x) to denote p(x1, . . . , xn). In the same
way, we sometimes denote a polynomial p ∈ F[x1, . . . , xn, y1, . . . , ys] by p(x, y). Let
S ⊂ [n] be a set of size m > 0, and write S = {i1, . . . , im}, where i1 < · · · < im.
Given a polynomial q ∈ F[y1, . . . , ym] and x = (x1, . . . , xn) we denote by q(x|S) the
restriction of q to the variables in S, namely, q(x|S) � q(xi1 , . . . , xim). For a polyno-
mial f(x) ∈ F[x1, . . . , xn] we denote by Hi[f ] the homogenous part of degree i of f
and H≤i[f ] =

∑
j≤i Hj [f ]. Namely, Hi[f ] is the sum of all terms of degree exactly i

in f .

2.2. Combinatorial designs. We quote the standard result on the combinato-
rial designs of Nisan and Wigderson.

Lemma 2.1 (see [NW94]). Let n, m be integers such that n < 2m. There exists a
family of sets S1, . . . , Sn ⊂ [l] such that

• l = O(m2/ log(n));
• for each i ∈ [n], |Si| = m;
• for every 1 ≤ i < j ≤ n, |Si ∩ Sj | ≤ log(n).

Moreover, this family of sets can be computed deterministically in time poly(n, 2l).

2.3. The Schwartz–Zippel lemma. The following generalization of the fun-
damental theorem of algebra is due to Schwartz and Zippel [Sch80, Zip79].

Lemma 2.2 (Schwartz–Zippel). Let F be a field, and let f ∈ F[x1, . . . , xn] be a
nonzero polynomial with degree at most r. Then for any finite subset S ⊂ F we have

|{c ∈ Sn : f(c) = 0}| ≤ r · |S|n−1.

The Schwartz–Zippel lemma gives a trivial (but not very efficient) deterministic
PIT algorithm for circuits. We call this algorithm the “brute force” algorithm.

Algorithm 2.3 (brute force PIT). Given an arithmetic circuit C(x1, . . . , xn)
over F and a bound r on its degree we test whether C ≡ 0 as follows. We pick a set
S ⊂ F of size r + 1 (if F is smaller than r + 1, we allow S to be in some extension
field). We then go over all assignments a ∈ Sn and check whether C(a) = 0. If all
the tests returned zero, then we say that C ≡ 0; otherwise we say that C 	≡ 0.
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2.4. Computing the homogenous parts of a circuit. The next lemma says
that if f has a circuit of small size and depth, then so do the polynomials Hi[f ]
(assuming the field is not too small).

Lemma 2.4. Let F be a field which has at least m + 1 distinct elements. Let
f(x) ∈ F[x1, . . . , xn] be a polynomial with deg(f) = m such that f has a circuit of size
s and depth d. Then there exists a circuit of size s′ = O(s · m) and depth d′ = d + 1
with m + 1 outputs computing H0[f ], . . . , Hm[f ]. Moreover, if the topmost gate in the
circuit for f is an addition gate, then we have d′ = d.

Proof. Let z be a new formal variable, and define

(1) g(x1, . . . , xn, z) = f(x1 · z, . . . , xn · z).

Notice that

(2) g(x, z) =
m∑

i=0

Hi[f ] · zi.

Computing all of the Hi[f ]’s is now done by treating g as a univariate polynomial in
z and recovering its “coefficients” using evaluations on a large enough set of points.
More formally, let c0, . . . , cm ∈ F be m + 1 distinct elements. Let Γ be an (m +
1) × (m + 1) matrix whose ith row is (1, ci, c

2
i , . . . , c

m
i ). Let α be the column vector

(H0[f ], H1[f ], . . . , Hm[f ])t and β = (g(x, c0), g(x, c1), . . . , g(x, cm))t. Using (2) we see
that β = Γ · α, and so since Γ is invertible, we have α = Γ−1 · β. Computing all the
entries of β (in parallel) can be done in depth d and size O(s · m) using the identity
in (1). Now, computing the entries of α can be done by adding another layer of
addition gates computing the linear transformation Γ−1. This increases the depth by
one unless the topmost gate is already an addition gate.

3. Roots of equations with polynomial coefficients. We now turn to the
proof of Theorem 4. We show that a solution y = f(x1, . . . , xn) of a polynomial
equation P (x1, . . . , xn, y) = 0 cannot have bounded depth complexity significantly
larger than that of P (x, y) when the degree of the variable y in P is not too large.

The heart of the proof of Theorem 4 is the following lemma that shows that (under
certain conditions on the derivative of P ) we can “approximate” the polynomial root
y = f(x) of the equation P (x, y) = 0 using a polynomial in the coefficients of P .
Each approximation gives the monomials of f(x) up to some degree k plus some
other monomials of higher degree than k (this is the “error” term). In the proof of
Theorem 4 we will use only the last approximation (when k = m) to construct a
circuit for f(x).

Lemma 3.1. Let F be a field, let P ∈ F[x1, . . . , xn, y] be such that degy(P ) = r,
and let f ∈ F[x1, . . . , xn] be such that P (x, f(x)) ≡ 0 and ∂P

∂y (0, f(0)) = ξ0 	= 0.
Write P (x, y) =

∑r
i=0 Ci(x) · yi. Then, for each k ≥ 0, there exists a polynomial

Qk ∈ F[z0, . . . , zr] of degree at most k such that

H≤k[f(x)] ≡ H≤k[Qk(C0(x), . . . , Cr(x))].

Moreover, given a size s circuit for P we can construct, in time poly(s, r), a circuit
for Qk.

Although we work over finite fields as well, we use the usual definition of a partial
derivative as over R, C. We defer the proof of Lemma 3.1 to section 3.2 and proceed
to give the proof of Theorem 4.
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3.1. Proof of Theorem 4. We start with a simple claim regarding the com-
plexity of computing partial derivatives.

Claim 3.2. For every 1 ≤ j ≤ r, the partial derivative ∂jP
∂yj (x, y) has an arith-

metic circuit of size poly(s, r) and depth at most d + 1 (the depth remains d if the top
gate is an addition gate). This circuit can be found in time poly(s, r).

Proof. Write P (x, y) =
∑r

j=0 Cj(x) · yj . Using the same trick as in the proof of
Lemma 2.4, we get that there exists a circuit D of size poly(s, r) and depth d+1 with
r + 1 outputs computing C0(x), . . . , Cr(x). To construct D we need to evaluate C in
r + 1 values and interpolate, that is, invert an (r + 1) × (r + 1) matrix. This can be
done in time poly(r).

Now, each partial derivative is a linear combination of products Cj(x) · yi. We
can compute each term of the form Cj(x) · yi using a circuit of size poly(s, r) and
depth d + 1 by multiplying each multiplication gate at the second highest level of the
circuit by yj (recall that the topmost gate is an addition gate now). The final circuit
for the derivative will be composed of a linear combination of these circuits (which
have a topmost addition gate) and so will also have depth d + 1. Notice that if the
topmost gate in the original circuit was an addition gate, then the resulting circuit
will have depth d. Given D and j, the time it takes to construct a circuit computing
∂jP
∂yj is also poly(s, r).

Part I - preparations. We first note that we can assume without loss of generality
(w.l.o.g.) that P is computed by a depth d circuit with an addition gate at the top.
Otherwise, if P = P1 · P2 · · ·Pr , where each Pi has a size at most s and depth d − 1
circuit with an addition gate at the top, then for some i we have that Pi(x, f(x)) ≡
0. To find Pi, we can use the Schwartz–Zippel lemma (Lemma 2.2). Namely, we
choose c uniformly at random from Sn, where S is a subset of F of size at least
2mt. The probability that Pj(c, f(c)) = 0 when Pj(x, f(x)) 	≡ 0 is at most 1/2 as
deg(Pj(x, f(x))) ≤ mt. By repetition, this probability can be made arbitrarily small,
e.g., smaller than r−2. Thus, we can find Pi, with probability at least 5/6, in time
poly(r, s) (we use the oracle access to f).

Observing Claim 3.2 we can assume w.l.o.g. that

(3)
∂P

∂y
(x, f(x)) 	≡ 0.

Otherwise, we could replace P with the first P̃ = ∂jP
∂yj (x, y) such that P̃ (x, f(x)) = 0

and ∂P̃
∂y (x, f(x)) 	≡ 0. The loss in the size incurred by Claim 3.2 is too small to be a

problem. As we assume that the top gate is an addition gate we get that the depth
remains the same. We can find P̃ using randomness and the Schwartz–Zippel lemma
again, with probability at least 5/6, in time poly(r, s). This is done iteratively: for
every j from 1 to r, check if ∂jP

∂yj (x, f) is zero; if it is zero, continue to j +1, and if it is
not zero, stop. In particular, we found a point x0 ∈ Fn such that ∂P

∂y (x0, f(x0)) 	= 0.
We can further assume w.l.o.g. that x0 = 0. Otherwise, we could prove the

theorem for the polynomials P (x+x0, y) and f(x+x0), and translate the result back
to the original P and f (one can verify that the earlier condition, given by (3), on
the derivative not being identically zero is maintained by this transformation). The
depth of the circuit may increase by 1 by this translation.

To conclude, with probability at least 2/3, we are now in a situation where

∂P

∂y
(0, f(0)) 	= 0.
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Part II - using Lemma 3.1. Write

P (x, y) =
r∑

j=0

Cj(x) · yj.

Applying Lemma 3.1 (proved in the next subsection) with k = deg(f) = m, we get
that there exists a polynomial Q ∈ F[z0, . . . , zr] of degree at most m such that

f(x) ≡ H≤m[f(x)] ≡ H≤m[Q(C0(x), . . . , Cr(x))].

In fact, Lemma 3.1 guarantees that we can find a circuit computing Q in time poly(r, s)
(we can use the oracle access to f). As deg(Q) ≤ m, we can use interpolation to find
{Qα}α∈Im so that

Q(z0, . . . , zr) =
∑

α∈Im

Qα ·
r∏

i=0

zαi

i ,

where Im � {(α0, . . . , αr) ∈ Nr+1 | ∑i αi ≤ m}. As Q has at most (m + 1)r+1

monomials, this requires time poly(s, mr).
Part III - finding a circuit for f(x). Observing the proof of Claim 3.2, we see that

we can find depth d circuits for the polynomials C0(x), . . . , Cr(x) in time poly(s, r) (as
the top gate is +). In Part II, we found a depth 2 circuit of size poly(mr) computing
Q. Therefore, we can find in time poly(s, mr) a circuit of depth d + 2 computing the
polynomial g(x) � Q(C0(x), . . . , Cr(x)); compose the circuit for Q with the circuits
for C0, . . . , Cr. Finally, Lemma 2.4 tells us that f(x) = H≤k[g(x)] can be computed by
a circuit of size poly(s, mr) and depth d +2 (we use the fact that |F| > t ·m ≥ deg(g)
and that the depth 2 circuit for Q has a + gate in the top). Again, this takes time
poly(s, mr). As we need to translate the input by x0 (recall Part I), the circuit for f
may be of depth d + 3 (if the layer above the inputs is of + gates, then the circuit for
f has depth d + 2).

3.2. Proof of Lemma 3.1. We describe how to efficiently construct a circuit
for Qk given a circuit for Qk−1. To start this process, we need to address the case
k = 0. For k = 0, we need to find the value of f(0). This can be done by factoring
the polynomial P (0, y) (alternatively, we can use oracle access to f). In this way we
get several possible values for f(0). We work with each of these values separately.3

Denote C̃i(x) = Ci(x) − Ci(0) (every monomial in C̃i has degree at least one).
In fact, we describe how to construct a circuit for a polynomial Q̃k(z0, . . . , zr) of
degree at most k so that H≤k[f ] = H≤k[Q̃k(C̃0, . . . , C̃r)]. This implies the lemma
with Qk(z0, . . . , zr) = Q̃k(z0 −C0(0), . . . , zr −Cr(0)) (as by Claim 3.2 we can recover
C0(0), . . . , Cr(0) in time poly(s, r)).

Now, assume that we constructed a circuit for Q̃k−1. Denote g =
Q̃k−1(C̃0, . . . , C̃r), and denote P ′(0, g(0)) = P ′(0, f(0)) = ξ0 	= 0, where P ′ = ∂P

∂y

(the constant term is the same in f and in g). We can calculate ξ0 in time poly(s).
Let P0(y) be so that P (x, y) =

∑r
i=0 C̃i(x) · yi + P0(y). Consider the polynomial

Q̂k(z0, . . . , zr) � Q̃k−1(z0, . . . , zr) − (1/ξ0)(
r∑

i=0

zi · Q̃k−1(z0, . . . , zr)i + P0

(
Q̃k−1(z0, . . . , zr)

))
,(4)

3It is interesting to note that if P has several different roots, then they all get different values at
the point 0; we discuss this in more detail after the proof.
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which satisfies

Q̂k(C̃0(x), . . . , C̃r(x)) = g(x) − (1/ξ0)P (x, g(x)).(5)

We will prove below that

H≤k [g(x) − (1/ξ0) · P (x, g(x))] = H≤k [f(x)] .(6)

Equations (5) and (6) tell us that the polynomial Q̃k = H≤k[Q̂k] satisfies the lemma,
as each C̃i is of degree at least one, and so

H≤k

[
Q̃k

(
C̃0, . . . , C̃r

)]
= H≤k

[
H≤k

[
Q̂k

] (
C̃0, . . . , C̃r

)]
= H≤k

[
Q̂k

(
C̃0, . . . , C̃r

)]
= H≤k [f(x)] ,

where the second equality follows as each monomial in any product of more than k
of the C̃i’s is of degree higher than k. Given a circuit for Q̂k, we can construct the
circuit for Q̃k using interpolation (as in Lemma 2.4) in time poly(s, r). Equation (4)
tells us how to construct the circuit for Q̂k given the circuit for Q̃k−1.

It remains to prove (6). The following chain of polynomial identities is derived by
throwing away (or modifying) terms that have total degree larger than k and using the
above information of f and g, in particular, the fact that H≤k−1[f(x)] = H≤k−1[g(x)].
Let us denote fk(x) = Hk[f(x)] and similarly for g.

0 ≡ H≤k [P (x, f(x))]
≡ H≤k [P (x, g(x) + {fk(x) − gk(x)})]

≡ H≤k

[
r∑

i=0

Ci(x) · (g(x) + {fk(x) − gk(x)})i

]

≡ H≤k

[
r∑

i=0

Ci(x) · (g(x)i + i · {fk(x) − gk(x)} · g(x)i−1
)]

≡ H≤k [P (x, g(x))] + H≤k [{fk(x) − gk(x)} · P ′(x, g(x))] .

The polynomial {fk(x) − gk(x)} contains only monomials of degree at least k (if
fk(x) ≡ gk(x), then there is nothing to prove). So, in order to get the homogenous
part of degree k in {fk(x)− gk(x)} ·P ′(x, g(x)), we have to take the homogenous part
of degree 0 in P ′(x, g(x)), which is given by P ′(0, g(0)) = ξ0 	= 0, and multiply it by
{fk(x) − gk(x)}. We can therefore continue the above chain of identities as follows:

. . . ≡ H≤k [P (x, g(x))] + ξ0 · {fk(x) − gk(x)}
≡ H≤k [P (x, g(x))] + ξ0 · {H≤k[f(x)] − H≤k−1[f(x)] − H≤k[g(x)] + H≤k−1[g(x)]}
≡ H≤k [P (x, g(x))] + ξ0 · {H≤k[f(x)] − H≤k[g(x)]} .

Rearranging we get

H≤k[f(x)] ≡ H≤k[g(x)] − H≤k [(1/ξ0) · P (x, g(x))]
≡ H≤k [g(x) − (1/ξ0) · P (x, g(x))] .

We now address a subtle issue in the proof of Lemma 3.1. Given a polynomial
P , it may have many different roots, say, f1, . . . , ft. For every fi, Lemma 3.1 defines
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an approximation Qi, which depends only on a single number, namely, fi(0). It is,
perhaps, surprising that given P this number entirely describes fi. This property
follows from the assumption on P ′. For example, assume that P =

∏t
i=1(y − fi),

and so P ′ =
∑t

i=1

∏
j �=i(y − fj). Thus, if two different polynomials fi and fj admit

fi(0) = fj(0), then P ′(0, fi(0)) = P ′(0, fj(0)) = 0. In this case, the lemma does not
guarantee anything.

4. Identity testing using a hard polynomial. In this section we prove Theo-
rems 1 and 2. Since the proofs are mostly identical, we will do them together (making
sure to note all the places that are different). For the rest of this section F will denote
either a finite field or the field of rational numbers.

4.1. The main lemma.
Lemma 4.1. Let n, r, s, and d be integers, and let f ∈ F[x1, . . . , xn] be a nonzero

polynomial with individual degrees at most r that is computed by a size s ≥ n circuit
of depth d. Let m ≤ (log(n))O(1) be an integer, and let S1, . . . , Sn ⊂ [l] be given
by Lemma 2.1 so that l = (log(n))O(1), |Si| = m, and |Si ∩ Sj | ≤ log(n). Let p ∈
F[z1, . . . , zm] be a multilinear polynomial such that

F (y) = F (y1, . . . , yl) � f (p(y|S1), . . . , p(y|Sn)) ≡ 0.

Then p(z) can be computed by a circuit of size ≤ (s · mr)a and depth d + 5 over F,
where a is some absolute constant. If F is finite, then we also require that |F| ≥ n2.

Proof. First notice that we can assume w.l.o.g. that r < m; otherwise the bound
on the circuit size for p becomes trivial, even for a depth 2 circuit. We start by
defining the “hybrid” polynomials:

F0(x, y) = f(x1, . . . , xn),
F1(x, y) = f(p(y|S1), x2, . . . , xn),

...
Fn(x, y) = f(p(y|S1), . . . , p(y|Sn)).

By our assumptions we have that F0(x, y) 	≡ 0 and Fn(x, y) ≡ 0. Therefore, there
exists an index 0 ≤ i < n such that

(7) Fi(x, y) 	≡ 0 and Fi+1(x, y) ≡ 0.

We would like to fix all the variables xi+2, . . . , xn (if i < n − 1) and the variables in
{yj|j 	∈ Si+1} to values in F such that the property given by (7) still holds for the
restricted versions of Fi and Fi+1. This is possible by Lemma 2.2 and using the bound
|F| ≥ n2 > nrm ≥ deg(Fi) if F is finite. Fixing the aforementioned variables leaves
us with equations

f̃(q1(y|S1∩Si+1), . . . , qi(y|Si∩Si+1), xi+1) 	≡ 0,

f̃(q1(y|S1∩Si+1), . . . , qi(y|Si∩Si+1), p(y|Si+1)) ≡ 0,(8)

where the polynomial f̃ is simply f with the variables xi+2, . . . , xn fixed to some values
and qj(y|Sj∩Si+1) are the polynomials p(y|Sj ) after we fix the variables {yj|j 	∈ Si+1}.
In order to simplify the notations for the rest of the proof we rename our variables
and rewrite (8) as follows:

g(z1, . . . , zm, w) 	≡ 0,

g(z1, . . . , zm, p(z1, . . . , zm)) ≡ 0,(9)
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where the polynomial g(z1, . . . , zm, w) is obtained by taking the expression

(10) f̃(q1(y|S1∩Si+1), . . . , qi(y|Si∩Si+1), xi+1)

and replacing xi+1 with w and the variables {yj|j ∈ Si+1} with {z1, . . . , zm} (main-
taining their relative order).

Our final step is to apply Theorem 4 on the polynomials g(z, w) and p(z) in order
to show that p(z) has a small circuit. Before doing so we will need to bound the
size/depth of the circuit computing g(z, w).

Claim 4.2. The polynomial g(z, w) can be computed by a circuit of size at most
poly(n, s) = poly(s) and depth d + 2.

Proof. Since g(z, w) has the same circuit complexity as the expression in (10), we
will find a circuit for that expression. The polynomials qj(y|Sj∩Si+1) are multilinear
polynomials of at most log(n) variables and as such can be computed by a depth 2
circuit of size ≤ n. Plugging these circuits into the circuit for f (or actually into the
restricted circuit for f̃), which is of size s and depth d, gives the required circuit for
g(z, w) (after renaming the variables).

Notice that degw(g) = degxi+1
(f) ≤ r. We can therefore use Theorem 4 to get that

p(z) has a circuit of depth d+5 and size ≤ (s ·mr)a. If F is finite, then the conditions
of Theorem 4 are satisfied since |F| ≥ n2 > max{r + 1, deg(g) · deg(p) + 1}.

4.2. Proof of Theorems 1 and 2. The proof is divided into three parts:
a description of the PIT algorithm, a proof of its correctness, and an analysis of
its running time. Recall that in Theorem 2 we have an underlying finite field F

and a polynomial p ∈ F[z1, . . . , zm] which is hard even for circuits over some finite
extension E of F of size at least 2m. In order to simplify the notations we will assume
for the remainder of this section that F itself has size at least 2m. This will still
imply the theorem since the question whether a circuit is identically zero or not is
unchanged when we work over an extension field. Notice also that since in our proof
m = polylog(n), the size of F is quasi-polynomial in n—the number of inputs in the
input polynomial.

The hitting set. Given a size bound s ≤ nc (for some constant c), a depth bound
d′, and a bound r = polylog(n) on the maximal degrees, we fix A to be some large
constant to be determined later (in the analysis) and let m = 
(A · r · log(n))3/ε� =
log(n)O(1) (recall that ε is such that pm is (2mε

, d, F)-hard). The hitting set is con-
structed as follows:

1. Construct a design S1, . . . , Sn ⊂ [l] as in Lemma 2.1 such that

l = O(m2/ log(n)) = log(n)O(1), |Si| = m, and |Si ∩ Sj| ≤ log(n).

2. Pick a subset T ⊂ F of size n · m · r + 1. Construct the set of all n-tuples of
the form (pm(y|S1), . . . , pm(y|Sn)) by going over all y ∈ T m.

The algorithm. Given an oracle access to a circuit C(x1, . . . , xn) of size s ≤ nc (for
some constant c) and depth d′, computing a polynomial f(x1, . . . , xn) with individual
degrees at most r = polylog(n) we simply evaluate C on all the elements of the hitting
set. If all the evaluations are zero, we output “zero;” otherwise we say “nonzero.”

Correctness. Denote

F (y) = F (y1, . . . , yl) = f(pm(y|S1), . . . , pm(y|Sn)).

Notice that the algorithm actually computes the evaluation of F over all the elements
of T m. Clearly, if f ≡ 0, then the algorithm will output zero. Therefore, it is enough
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to show that if f 	≡ 0, then F (y) 	= 0 for some y ∈ T m. As deg(F ) ≤ n · m · r, the
brute force algorithm (Algorithm 2.3) guarantees that if F 	≡ 0, then there will be
some y ∈ T m for which F (f) 	= 0. Thus, it is enough to prove that F 	≡ 0.

Suppose in contradiction that f 	≡ 0 and F (y) ≡ 0. By applying Lemma 4.1
(using the bound |F| ≥ 2m ≥ n2) we get that pm can be computed by a circuit of
size (s · mr)a and depth d′ + 5 for absolute constant a. Setting A = a · c + 1 we have
that sa ≤ na·c ≤ 2

a·c
A mε/3

< 2mε/3
and that mr·a ≤ m

a
A ·mε/3 ≤ 2mε/3·log(m) ≤ 2mε/2

(using the inequality r ≤ 1
A · mε/3). Therefore, the total circuit size is bounded by

(s · mr)a ≤ 2mε

, which violates the lower bound assumption on pm as d′ + 5 = d.
Running time. Clearly, the running time is equivalent to the time required for con-

structing the hitting set. Step 1 of the construction can be done in time poly(n, 2l) =
npolylog(n) by Lemma 2.1. In step 2 for each Si we have to evaluate pm(y|Si) on
(nmr + 1)m inputs. This requires, in the worst case, 2m · (nmr + 1)m = npolylog(n)

time.

5. Implications of derandomizing CPITd(Q). We now give a sketch of the
proof of Theorem 3. The proof is an exact analogue of the proof of Theorem 4.1 of
[KI04]. Their proof has the following structure (in brackets we give the modification
needed to prove the observation). Assume that NEXP ⊆ P/poly. Then by previous
results (a combination of [Tod91] and [IKW02]) we get that coNEXP ⊆ P0−1Perm,
where 0 − 1Perm is the (boolean) language (M, v) of all 0/1 matrices M and the value
of their Permanent v (given in binary). We now want to show that if the other two
conditions hold, then P0−1Perm ⊆ NSUBEXP. Combining the two containments we
get that coNEXP ⊆ NSUBEXP, which is a contradiction as a simple diagonalization
shows.

Thus, to conclude the argument we need to show that if Permanent has polynomial
size (depth d) circuits and CPIT(Q) (CPITd(Q)) is in NSUBEXP, then P0−1Perm ⊆
NSUBEXP. Indeed, if the Permanent has polynomial size (depth d) circuits, then we
can guess such a circuit C. Now, using the simple fact that the Permanent of a k × k
matrix for any k ≤ n can be computed by a circuit for an n × n Permanent we can
assume w.l.o.g. that we have a circuit Ck for every k ≤ n that should compute the
k × k Permanent. We now write the following identities:

C1(x) = x,

Ck

(
X(k)

)
=

k∑
i=1

x1,i · Ck−1

(
X

(k)
i

)
,

where X(k) = (xi,j)i,j∈[k] is a k × k matrix and X
(k)
i is its ith minor along the first

row (that is, the matrix obtained from deleting the first row and the ith column).
It is clear that C = Cn computes the Permanent if and only if all the equalities are
satisfied. As C is a polynomial size (depth d) circuit, then so are each of the circuits

Ck

(
X(k)

)
−

k∑
i=1

x1,i · Ck−1

(
X

(k)
i

)

(as the Permanent is an irreducible polynomial, we can assume w.l.o.g. that the top
gate of the circuit C is an addition gate, and so the depth remains the same). Thus,
by running our NSUBEXP PIT algorithm we can verify that C indeed computes the
Permanent. As we just gave a NSUBEXP algorithm for computing the Permanent,
we get that P0−1Perm ⊆ NSUBEXP as required.
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6. Concluding remarks. We have demonstrated a hardness vs. randomness
tradeoff for constant depth circuits. However, our understanding of this tradeoff is
far from being complete. Our analysis shows that a hardness assumption implies a
quasi-polynomial time algorithm for CPITd

r(F) only for r (the bound on the individual
degrees) that is poly-logarithmic. The existence of a quasi-polynomial time algorithm
for higher degrees (based on some hardness assumption) remains open.

Another problem of independent interest is the root finding problem: given a
polynomial P (x, y) computed by a small constant depth circuit, can we find constant
depth circuits for the roots of P efficiently? Here we showed that if the field is large,
then as long as the degree of y in P is small, the answer to this question is affirmative.
For example, when the degree of y is constant, we can find constant depth circuits for
the roots of P in polynomial time, with high probability. However, this algorithm is
not efficient when the degree of y is large.
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for useful suggestions.
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