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Abstract

In this paper we study the problem of explicitly constructing a dimension expander raised
by [BISW04]: Let Fn be the n dimensional linear space over the field F. Find a small (ideally
constant) set of linear transformations from Fn to itself {Ai}i∈I such that for every linear subspace
V ⊂ Fn of dimension dim(V ) < n/2 we have

dim

(∑

i∈I

Ai(V )

)
≥ (1 + α) · dim(V ),

where α > 0 is some constant. In other words, the dimension of the subspace spanned by
{Ai(V )}i∈I should be at least (1 + α) · dim(V ). For fields of characteristic zero Lubotzky and
Zelmanov [LZ04] completely solved the problem by exhibiting a set of matrices, of size indepen-
dent of n, having the dimension expansion property. In this paper we consider the finite field
version of the problem and obtain the following results.

1. We give a constant number of matrices that expand the dimension of every subspace of
dimension d < n/2 by a factor of (1 + 1/ log n).

2. We give a set of O(log n) matrices with expanding factor of (1+α), for some constant α > 0.

Our constructions are algebraic in nature and rely on expanding Cayley graphs for the group
Z/Zn and small-diameter Cayley graphs for the group SL2(p).
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1 Introduction

Let F be a field, and V ⊂ Fn a linear subspace of dimension dim(V ) < n/2. It is easy to verify that
a random subspace U ⊂ Fn of dimension at most n/2 will have a small intersection, w.h.p.,1 with
V . Similarly, if we pick a linear transformation A from Fn to itself, at random, then w.h.p V and
A(V ) will have a small intersection. Stated differently this is equivalent to having dim(V + A(V ))
significantly larger than dim(V ). It is not difficult to show that if we pick a small number (say
100) linear transformations {Ai}100

i=1 at random then w.h.p. for every such V we will have that
dim(

∑100
i=1 Ai(V )) ≥ 11

10 ·dim(V ). It is thus a natural problem (and indeed it was raised by [BISW04])
to find an explicit construction of such set {Ai}. We refer to a set of linear transformations having
the dimension expansion property as a dimension expander.

In this paper we study the problem of explicitly constructing dimension expanders, of a constant
size, over finite fields and obtain some partial results. We start by giving the formal definition and
statement of the problem. Then we state our results and discuss the context of the problem.

1.1 Our results

Before stating our result we shall need the following formal definition of a dimension expander.

Definition 1.1 (Dimension Expander). Let F be a field and let A1, . . . , Ak : Fn → Fn be linear
mappings. The set A = {Ai}k

i=1 is a (d, α)-dimension expander if for every subspace V ⊂ Fn of
dimension at most d we have

dim

(
k∑

i=1

Ai(V )

)
≥ (1 + α) · dim(V ). (1)

We say that A is explicit if there exists a poly(n)-time algorithm that, on input n, outputs A.

Problem 1. Construct an explicit (d, α)-dimension expander A = {Ai}k
i=1, with d = Ω(n), α = Ω(1)

and k = O(1).

We give two constructions of dimension expanders. The first gives a set of log n linear trans-
formations that have a constant expansion factor. The second gives a constant number of linear
transformation with an expansion factor of 1 + 1/ log n.

Theorem 1. Let F be a field. There exists a constant α > 0 such that for every n there exists a set
A(n) of O(log(n)) linear mappings from Fn to Fn that is an (Ω(n), α)-dimension expander. Moreover,
the construction of A(n) is explicit and independent of the field F.

Theorem 2. Let F be a field. There exists a constant k0 > 0 such that for every n there exists a
set A(n) of k0 linear mappings from Fn to Fn that is an (Ω(n), Ω(1/ log(n)))-dimension expander.
Moreover, the construction of A(n) is explicit and independent of the field F.

1When |F| grows, V and U are likely to intersect only at the ~0 vector.
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1.2 Background

The question of explicitly constructing a dimension expander is a very natural derandomization
problem. It is very easy to show that a random choice of linear transformations yields an (Ω(n), α)-
dimension expander (for some constant α > 0), and we wish to find, deterministically, an explicit
construction.

Giving an explicit construction of an object whose existence is easily proved by probabilistic
arguments has been a very active and fruitful field of research. Two combinatorial objects that are
closely related to dimension expanders are affine extractors and bounded degree expander graphs.

An affine extractor is a function E : Fn → Fk that, when restricted to any affine subspace V of
dimension k′ = O(k), satisfy that E(V ) is (almost) uniformly distributed. Clearly such extractors
seem very related to dimension expanders. The main difference between the two concepts is that
extractors do not need to act linearly on the input. In fact, it is not difficult to show that it is
impossible for E to be linear. The problem of constructing affine extractors was solved almost
completely by Gabizon and Raz [GR05] over large (polynomial in n) fields and partially by Bourgain
[Bou07] over F2 (Bourgain’s extractors work when k = Ω(n)). For subspaces of small dimension
in F2, and for small fields other than F2, the problem is still open. It may seem surprising, but
the affine extractors of [GR05] already found an application in the work of [KS07] regarding the
derandomization of polynomial identity testing for depth three circuits. We hope that dimension
expanders will prove to be useful objects for other derandomization problems.

Another related combinatorial object is constant degree expander graphs. Dimension expanders
can be thought of as constant degree expanders that need to expand (in dimension) any linear space.
Indeed, a different formulation of Problem 1 is: We wish to construct a k-regular graph whose nodes
are the elements of Fn, such that each element v is connected to {Aiv}k

i=1, that has the following
property: the neighborhood of any d dimensional vector space is not contained in any (1 + α) · d
dimensional space, for d = O(n). We note that a usual edge/vertex expander is not necessarily a
dimension expander as even if the size of the neighborhood of a subspace V is of size k · |V |, it does
not mean that it is not contained in a linear space of dimension, say, dim(V ) + log k. It is interesting
to note though that both our constructions and the construction of [LZ04] are based on expanding
Cayley graphs (see Section 1.3 for definition of a Cayley graph).

Beside being a natural derandomization problem, the question of constructing dimension ex-
panders is related to an interesting problem in the theory of representations of finite groups over
finite fields. Specifically it is related to an attempt to generalize the notion of property T of unitary
representations of finite groups (over C) to representations over finite fields.

1.3 Property T

Below we give the formal definition of property T . For more on this topic we refer the reader to
the excellent books [Lub94, LZ] where some applications of property T are also discussed. In the
following ‖ · ‖ denotes the `2 norm.

Definition 1.2 (Property T). Let G be a finite group, S ⊂ G a set of generators for G and2

ρ : G → U(Cn) an irreducible unitary representation of G. The Kazhdan constant of G and S with
2U(Cn) is the group of unitary transformations from Cn to itself.
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respect to ρ is defined as:

κS
G(ρ) = min

0 6=v∈Cn
max
s∈S

‖ρ(s)v − v‖
‖v‖ . (2)

The Kazhdan constant of G with respect to S is defined as κG(S) = infρ∈U κS
G(ρ), where U is the

set of nontrivial irreducible unitary representations of G. We say that G has property T with respect
to S if κG(S) > 0.

It is not hard to see that G has property T with respect to S if the Cayley graph Cay(G,S) is an
expander. Recall that the Cayley graph Cay(G,S) is the graph on the elements of G, in which g and
g′ are connected by an edge if and only if g · g′−1 ∈ S ∪ S−1. Moreover, if we replace in Equation (2)

maxs∈S
‖ρ(s)v−v‖

‖v‖ with the average
‖ 1
|S|Σs∈Sρ(s)v−v‖

‖v‖ then we get (following the notations of [MW04])

κ̃G(S) = inf
ρ∈U

min
06=v∈Cn

‖ 1
|S|Σs∈Sρ(s)v − v‖

‖v‖ (3)

the “averaged” Kazhdan constant. Meshulam and Wigderson [MW04] showed that

λ(Cay(G,S)) = 1− κ̃G(S),

where λ(Cay(G,S)) is the second largest eigenvalue of the normalized adjacency matrix of Cay(G,S).
This highlights the tight connection between property T and expansion of the corresponding Cayley
graph.

The connection between property T and dimension expanders was demonstrated in the work of
Lubotzky and Zelmanov [LZ04] that proved that if G has property T with respect to S, with Kazhdan
constant κ = κG(S), and ρ : G → Cn is any nontrivial irreducible unitary representation then the set
{ρ(s)}s∈S is an (O(n), α) dimension expander for α ≥ κ2

4 . Interestingly, Lubotzky and Zelmanov were
not motivated by the question of constructing a dimension expander but rather with the problem of
generalizing the notion of property T to finite fields as well. Indeed, property T is defined through
unitary representations, a concept that does not exist for finite fields. As property T proved to be
such a useful mathematical concept it is very desirable to have a finite field analog of it. The work
of [LZ04] suggests that a possible generalization of property T for representations over finite fields is
to ask that {ρ(s)}s∈S is a dimension expander. Namely, G will have property T if there exists a set
of generators S such that for every non trivial representation ρ, {ρ(s)}s∈S is a dimension expander.
Currently however little is known on the relation between dimension expanders and Property T . In
particular Lubotzky and Zelmanov [LZ04] ask the following question:3

Question 1. Let G be a group generated by a finite set S. If ρ : G → Cn is an irreducible unitary
representation such that {ρ(s)}s∈S is a dimension expander, then is it true that κS

G(ρ) > 0?

Our results also give the feeling that there is a strong connection between expanding Cayley
graphs and dimension expanders (over finite fields), and so it hints that dimension expanders are the
“correct” analog of property T , but we do not have any formal theorem of that sort.

3The question of [LZ04] is slightly different and concerns the Kazhdan constant of the representation adj(ρ) that is
derived from ρ, but for the purpose of this exposition we give a slightly stronger question.
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1.4 Organization

In Section 2 we give some definitions and prove some basic properties of dimension expanders. We
also discuss expanding Cayley graphs there. In Section 3 we prove Theorem 1 and in Section 4 we
prove Theorem 2.

2 Preliminaries

2.1 Subspaces and their set of degrees

Let v = (v1, . . . , vn) ∈ Fn be a non-zero vector. We denote by deg(v) (the degree of v) the largest index
i ∈ [n] such that vi 6= 0. Let V be a subspace of dimension k in Fn and let DV = {deg(v) | v ∈ V, v 6= 0}
be the set of degrees of all vectors in V . It is clear that |DV | = k, since vectors with distinct degrees
are always linearly independent. Another easy fact is that we can always find a basis of V such that
the degrees of the basis vectors are distinct. The following claim is trivial, but we make it explicit
since it will be used many times in our construction.

Claim 2.1. Let V ⊂ Fn be a k-dimensional subspace and let DV be its set of degrees. Let A : Fn → Fn

be a linear mapping and let DA(V ) = {deg(A(v)) | v ∈ V, A(v) 6= 0}. Then,

dim (V + A(V )) ≥ |DV ∪DA(V )|

2.2 Expanding generators for (Zn, +)

Let G = (V, E) be an undirected graph on n vertices. For a set S ⊂ V we denote by Γ(S) the set of
neighbors of S in G. We say that G is an (s, β)-expander if for every set S ⊂ V such that |S| ≤ s
we have |Γ(S)| ≥ (1 + β)|S|. We will be interested in the case in which the set of vertices of G is
a group. Let H be a finite group (possibly non-abelian). Let M ⊂ H be a set of generators for H.
The Cayley graph induced by M on H is the (undirected) graph with vertex set H and such that two
vertices v, u have an edge between them iff there exists m ∈ M such that u = mv or v = mu. We
denote this graph by Cay(H, M).

An important ingredient of our construction will be a set of integers J = {j1, . . . , jd} ⊂ [n] such
that the Cayley graph they induce on (Zn, +) (the group of integers modulo n with the operation of
addition) is an (γn, β)-expander for constants 0 < β, γ independent of n. Since (Zn, +) is an abelian
group, we know that the size of J must be at least logarithmic in n. It is also known that O(log(n))
generator are sufficient to give an expanding Cayley graph [AR94]. A result of Wigderson and Xiao
[WX06] allows us to compute such a set J in polynomial time (the result in [WX06] is more general
and regards any group H and not just Zn).

Theorem 2.2 (Special case of [WX06]). There exist constants β, γ > 0 and an algorithm T such
that on input n, the algorithm runs in poly(n) time and returns a set J ⊂ [n] of size O(log(n)) such
that J generates (Zn, +) and the graph Cay(Zn, J) is a (γn, β)-expander.
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2.3 Generating cyclic shifts with small diameter

For an integer n we denote by s1, . . . , sn : Fn → Fn the n right cyclic shifts of the coordinates of
Fn. That is, for a vector v = (v1, . . . , vn) ∈ Fn we have sj(v) = (vn−j+1, . . . , vn, v1, v2, . . . , vn−j). In
order to prove Theorem 2 we will need to find a way to express all n cyclic shifts as words of length
O(log(n)) using some small (constant) set of permutations on [n]. The next lemma allows us to do
something almost as good, which will be sufficient for our needs. One restriction which we will later
need to overcome is that n = p + 1 for a prime p.

Lemma 2.3. Let n = p+1, for a prime p. Let Sp+1 denote the set of permutations on {1, . . . , p+1}.
Let s1, . . . , sp ∈ Sp+1 denote the p right cyclic shifts on the set {1, . . . , p} (as defined above), and such
that sj(p + 1) = p + 1 for every j. Then, there exists a set M ⊂ Sp+1 of size |M | ≤ 7 such that for
every j ∈ [p], the permutation sj can be written as a word of length O(log(p)) using elements from
M ∪ M−1 (elements from M and their inverses). Moreover, this set M can be generated in time
polynomial in n.

Proof. Let G = SL(2, p) be the group of 2× 2 matrices over Fp with determinant one. It was shown
in [BKL89] that there exists a set M ′ ⊂ G of size at most seven such that the diameter of Cay(G,M ′)
is O(log |G|) = O(log(p)) (the result of [BKL89] holds for any finite simple group).

Let us identify the set [n] = [p + 1] with the projective line P1 = Zp ∪ {∞} via the bijection
ξ : [n] → P1 that sends ξ(j) = j − 1 for 1 ≤ j ≤ p and ξ(p + 1) = ∞. The group G acts on P1 in a
natural way via a group homomorphism φ : G → SP1 ' Sp+1 that is defined as follows: for a matrix
A =

(
a b
c d

) ∈ G we let φ(A) be the permutation on P1 defined by φ(A)(x) = ax+b
cx+d , where we use

the convention that j
0 = ∞ for j 6= 0 and that φ(A)(∞) = a

c (notice that we never have to deal with
the case 0

0 since det(A) = 1). It is easy to verify that φ is indeed a group homomorphism. The reason
φ is useful is that the image of φ contains all p cyclic shifts on Zp that fix ∞ (these are the images
of the matrices

(
1 j
0 1

)
) and these are precisely the permutations (now viewed as elements of Sp+1)

that we wish to write as short words.

All is left now is to observe that M = φ(M ′) satisfies the requirement of the lemma. For j ∈ Zp

let Aj =
(

1 j
0 1

)
. Let sj = φ(Aj) be a cyclic shift on Zp that fixes ∞. Using the result of [BKL89]

we can write Aj = M ′
1M

′
2 . . . M ′

t , where for each i ∈ [t], M ′
i ∈ M ′∪M ′−1 and t ≤ O(log(p)). Applying

φ to this equality we get that sj = φ(M ′
1) ◦ φ(M ′

2) ◦ . . . ◦ φ(M ′
t) and we are done.

2.4 Expansion of a composition of linear maps

In the proof of Theorem 2 we will need to use the following easy lemma. What the lemma says is
that for a fixed subspace the expansion of a composition of linear maps is at most the sum of their
individual expansion w.r.t that particular subspace. Because of its simplicity and usefulness we give
the lemma here and not as part of the proof of Theorem 2.

Lemma 2.4. Let F be a field. Let V ⊂ Fn be a subspace of dimension k. Let A1, . . . , At : Fn → Fn

be linear maps such that for every i ∈ [t] we have dim(V + Ai(V )) ≤ (1 + α) · k, where α is some
positive number (α can depend on n). Let A = A1 ◦ . . . ◦At, then dim(V + A(V )) ≤ (1 + tα) · k.

Proof. The proof is by induction on t. If t = 1 then the claim is trivial. Suppose t > 1. Set
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A′ = A2 ◦ . . . ◦ At. We have that A = A1 ◦ A′. From the inductive hypothesis we know that
dim(V + A′(V )) ≤ (1 + (t − 1)α) · k. This means that A′(V ) contains at most (t − 1)α · k linearly
independent vectors that do not belong to V . Applying A1 to A′(V ) can add to these at most an
additional α · k independent vectors from Fn \ V and so the total number of linearly independent
vectors in A(V ) that are not in V is at most tα ·k. This means that dim(V +A(V )) ≤ (1+ tα) ·k.

3 Constant expansion using O(log(n)) maps

In this section we give a construction of O(log(n)) linear mappings that expand the dimension of any
(not too large) subspace by a constant factor. Throughout this section we will assume w.l.o.g that
n is even. If n is odd we can fix one coordinate in Fn to zero. This can reduce the expansion by an
additive term of at most one, that can be safely ignored. Hence, we write n = 2m.

Recall that s1, . . . , sn : Fn → Fn are the n right cyclic shifts of the coordinates of Fn. We construct
our dimension expander by first taking O(log(n)) cyclic shifts {sj}j∈J where J ⊂ [m] is such that
Cay(Zm, J) is an expander (see Section 2.2). Notice that the mappings sj are cyclic shifts of Fn and
not Fm, even though we use an expander for Zm. This set of linear maps alone cannot be a dimension
expander since it is known that for certain values of n there are subspaces of Fn that are invariant to
all cyclic shifts (see [MS77]). To fix this, we include in our dimension expander two additional maps
we denote by PL, PR : Fn → Fn, which are defined as follows: Let v = (v′, v′′) ∈ Fn be a vector such
that v′ denotes the first m coordinates of v and v′′ denotes the last m coordinates of v. We define
PL(v′, v′′) = (v′′, 0̄) and PR(v′, v′′) = (0̄, v′). That is, PL is a composition of a projection on the last
m coordinates and a left shift of m places and PR is a composition of a projection on the first m
coordinates and a right shift of m places4.

The intuition for the proof is the following: Consider the set of degrees of a k-dimensional vector
space V (as defined in Section 2.1). We can split this set into two sets: one containing the degrees
smaller than m and the other the degrees larger than m. Call these sets DL and DR (L and R for Left
and Right). If PL, PR do not expand V than it means that DL is approximately equal to DR when
considering the sets modulo m. Now, for a vector v such that deg(v) ∈ DL and for a shift sj , j ∈ J ,
we have that deg(sj(v)) = deg(v) + j. This means that the shifts we use act on the set DL as if it
was a set in Zm (the fact that DL ∼ DR is what makes this work). Using the expansion properties of
Cay(Zm, J) we get that applying all the shifts in J gives us many new degrees that did not appear
in DL ∪DR and, using Claim 2.1, the proof is completed.

The next theorem, which directly implies Theorem 1, describes this construction more formally.

Theorem 3.1. Let F be a field and let n = 2m be an even integer. Let β, γ > 0 and J ⊂ [m] be
given by Theorem 2.2. That is, the graph Cay(Zm, J) is a (γn, β)-expander and |J | ≤ O(log(m)).
Let A(n) = {sj}j∈J ∪ {PL, PR}, where s1, . . . , sn and PL, PR are defined as above. Then, A(n) is a
(γ′n, β′)-dimension expander, where γ′, β′ > 0 depend only on γ and β respectively.

Proof. Let α > 0 be some small constant to be determined later (α will be a function of β). Let
V ⊂ Fn be a subspace of dimension k. We will assume that PL, PR do not expand V by a factor of α
and will conclude that the set of shifts {sj}j∈J expand V by some constant factor depending on β.

4The reader familiar with cyclic codes can easily verify that PL alone expands any cyclic subspace. However, we do
not use this fact directly in our proof.
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Let D be the set of degrees of V (see Section 2.1) and let DL = D∩{1, . . . ,m} and DR = D \DL.
By definition we have |D| = |DL|+ |DR| = k. We denote (DR −m) = {i−m | i ∈ DR} and similarly
for other sets (and shifts).

Claim 3.2. Suppose that dim(V + PL(V ) + PR(V )) ≤ (1 + α) · k. Then

1. |DL ∪ (DR −m)| ≤ (1 + α) · k
2 .

2. |DL ∩ (DR −m)| ≥ (1− α) · k
2

Proof. It is easy to see that the set of degrees of the subspace V + PL(V ) + PR(V ) contains the four
sets DL, DR, (DL +m) and (DR−m). If the first item of the claim is false, that is: |DL∪(DR−m)| >
(1 + α) · k

2 , then it also holds that |DR ∪ (DL + m)| > (1 + α) · k
2 . This implies, using Claim 2.1, that

the dimension of V + PL(V ) + PR(V ) is larger than 2 · (1 + α) · k
2 = (1 + α) · k - a contradiction.

The second item of the claim follows directly from the first item and the fact that |DL|+|DR−m| =
k, without using any special properties of the sets.

We now proceed under the assumption (and conclusions) of Claim 3.2. Our goal is to show (again,
using Claim 2.1) that the set of shifts {sj}j∈J expand V by a constant factor. In order to do so we
define the set

R =
⋃

j∈J

(DL + j).

Observe that since both DL and J are subsets of {1, . . . , m} it holds that for a vector v ∈ V such
that deg(v) ∈ DL we have deg(sj(v)) = deg(v) + j. Therefore, the set of degrees of the subspace∑

j∈J sj(V ) contains the set R. Hence, showing that |R ∪D| ≥ (1 + β′) · k for some constant β′ will
complete the proof.

Let R′ = (R mod m) = {i mod m | i ∈ R}. The set R′ corresponds to the set of neighbors of DL

in the graph Cay(Zm, J). We would like to use the expansion properties of Cay(Zm, J) to show that
R′ is larger than DL by a constant factor. In order to do so we need to make sure that DL is not
too large. Taking γ′ = γ/2 and observing that |DL| ≤ k ≤ γ′n = γm we can indeed use the above
expander to conclude that |R′| ≥ (1 + β) · |DL|. Using this fact and both parts of Claim 3.2 we can
derive the following inequality

|R′| ≥ (1 + β) · |DL|
≥ (1 + β) · (1− α) · k

2

= (1 + β) · 1− α

1 + α
· (1 + α) · k

2

≥ (1 + β) · 1− α

1 + α
· |DL ∪ (DR −m)|

≥ (1 + β/2) · |DL ∪ (DR −m)|, (4)

where the last inequality holds for small enough α = α(β).

From Eq. 4 it follows that R′ contains at least

(β/2) · |DL ∪ (DR −m)| ≥ (β/2) · (k/2) = (β/4) · k
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elements not in DL ∪ (DR −m). This implies that R contains the same number of elements not in
DL ∪ DR. From this we conclude that |R ∪ D| ≥ (1 + β/4) · k. Combining all of the above we get
that A(n) expands V by β′ = min{α, β/4} as was required.

4 Inverse logarithmic expansion using O(1) maps

We now turn to proving Theorem 2. We will use ideas similar to the ones appearing in Section 3
together with some new observations. The main new ingredient will be an application of Lemma 2.3.
Since Lemma 2.3 requires n to be p + 1 for a prime p we first give a construction for this case. Later
we will show how to deal with general n.

4.1 The case n = p + 1

In this section we describe a construction of a dimension expander as in Theorem 2, for the case
n = p + 1, p prime. Let p be an odd prime and let n = p + 1. Our dimension expander will include
the set of coordinate permutations M ⊂ Sp+1 given by Lemma 2.3 together with their inverses and
one additional mapping P : Fn → Fn defined as follows: Let v = (v1, . . . , vn) ∈ Fn. We define
P (v) = (v(p+3)/2, . . . , vp+1, 0, . . . , 0). That is, P is defined the same way as PL from Section 3 with
n = p + 1 (notice that n is even).

In view of the discussion in Section 3, the intuition for the proof is quite clear: If P does not
expand a subspace V then the set of ‘small’ degrees DL must be of size at least, say, k/3. From this
fact, it follows quite easily that there exists a cyclic shift of the first p coordinates that expand V by a
constant (consider the expected number of ‘new’ degrees in a randomly chosen shift of DL). Writing
this shift as a composition of O(log(p)) permutations from M ∪M−1 and using Lemma 2.4 we deduce
that there must be a mapping in M ∪M−1 that expand V by at least Ω(1/ log(p)).

The following theorem describes this construction more formally.

Theorem 4.1. Let F be a field and let n = p + 1 where p is an odd prime. Let M be the set of
coordinate permutations of Fn given by Lemma 2.3 and let P be the mapping defined above. Recall
that |M | ≤ 7. Let A(n) = M∪M−1∪{P}. Then, A(n) is an (n/5,Ω(1/ log(n)))-dimension expander.

Proof. Let V be a subspace of Fn of dimension k ≤ n/5. Let D ⊂ [n] denote its set of degrees
(see Section 2.1) and let DL = D ∩ {1, . . . , n/2} and DR = D \ DL. If |DL| < k/3 then we have
dim(V + P (V )) ≥ (1 + 1/3) · k. To see this observe that in this case |DR| ≥ (2/3) · k and that the
subspace V + P (V ) contains degrees both in DR and in DR − (n/2), which are disjoint from one
another.

We now proceed under the assumption that |DL| ≥ k/3. We denote by s1, . . . , sp : Fn → Fn the p
right cyclic shifts of the first p coordinates of Fn (the last coordinate remains fixed). The next claim
shows that there exists j such that sj expands V by a constant.

Claim 4.2. There exists j ∈ [p] such that dim(V + sj(V )) ≥ (1 + 1/12) · k.

Proof. Observe that it is enough to show that there exists j ≤ p/2 for which |D ∪ (DL + j)| ≥
(1 + 1/12) · k. This is because for j ≤ p/2 and for a vector v ∈ V for which deg(v) ∈ DL we
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have deg(sj(v)) = deg(v) + j. This will follow if we show that there exists j ≤ p/2 such that
|D∩ (DL + j)| ≤ (1/4) ·k. To show this, we will consider the expectation µ = Ej [|D∩ (DL + j)|] when
j is chosen uniformly from the set {1, . . . , (p− 1)/2}. We can write µ as a sum µ =

∑
i∈D,j∈DL

χi,j ,
where the χi,j ’s are indicator variables for the event i ∈ (DL + j). We note that

µ =
1

p/2
·

∑

i∈D,j∈DL

χi,j =
2
p
·

∑

j<i:j∈DL,i∈D

χi,j ≤ 2
p
·
(|D|

2

)
<
|D|
p
· |D|.

Using the fact that |D| = k ≤ n/5 ≤ p/4 we get that µ ≤ (1/4)|D| = k/4. Therefore, there must
exists j ≤ p/2 for which |D ∩ (DL + j)| ≤ k/12.

Let sj∗ be such that dim(V + sj∗(V )) ≥ (1 + 1/12) · k. Using Lemma 2.3 we can write

sj∗ = M1 ◦ . . . ◦Mt,

where for each i ∈ [t], Mi ∈ M ∪ M−1 and such that t ≤ O(log(p)) = O(log(n)). Now, using
Lemma 2.4, we get that there exists Mi∗ ∈ M ∪M−1 ⊂ A(n) that expands V by at least Ω(1/ log(n)).

4.2 The case of general n

Having constructed a dimension expander as in Theorem 2 for the case n = p + 1, p prime, we now
wish to reduce the case of general n to this case. The reduction will be rather easy and will require
us to add only one more mapping on top of the mappings in the dimension expander we previously
constructed.

Let n be some integer. We can find (in polynomial time) a prime n/2 < p < n. The fact that
such a prime exists is known as Bertrand’s Postulate and finding it in polynomial time can be done
using a trivial search. The idea of the construction is to apply the dimension expander A(p + 1)
given by Theorem 4.1 on the first p + 1 coordinates and to include one more mapping that will
ensure that these coordinates contain a non-negligible part of the subspace. This additional mapping
Qp : Fn → Fn is defined by Qp(v1, . . . , vn) = (vp+2, . . . , vn, 0, . . . , 0). The next theorem, which directly
implies Theorem 2, describes the above construction more formally.

Theorem 4.3. Let F be a field and let n be an integer. Let p be a prime such that n/2 < p < n.
Let A(p + 1) be the dimension expander given by Theorem 4.1. We treat the mappings in A(p + 1)
as acting on Fn by applying them only on the first p + 1 coordinates and leaving the last n − p − 1
coordinates untouched. Let A′(n) = A(p + 1) ∪ {Qp}, where Qp is defined as above. Then, A′(n) is
an (n/10, Ω(1/ log(n))-dimension expander.

Proof. Let V be a subspace of Fn of dimension k ≤ n/10. Let D ⊂ [n] be its set of degrees (see
Section 2.1) , let DL = D ∩ {1, . . . , p + 1} and DR = D \DL. If |DL| ≤ k/3 then, as in the proof of
Theorem 4.1, we have that dim(V +Qp(V )) ≥ (1+1/3) ·k. We can thus assume that |DL| ≥ k/3. Let
VL be the projection of V onto the first p + 1 coordinates, so that DL is equal to the set of degrees
of VL. Using Theorem 4.1 we have that A(p + 1) expands VL by a factor of Ω(1/ log(n)) (here we use
the fact that k ≤ n/10 ≤ (p+1)/5). This means that the image of V under the mappings in A(p+1)
contains at least Ω(|DL|/ log(n)) = Ω(k/ log(n)) linearly independent vectors that are not in V and
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such that these vectors are zero in the last n − p − 1 coordinates. This means that the image of V
under A(p + 1) has dimension at least

|DL| · (1 + Ω(1/ log(n))) + |DR| ≥ (1 + Ω(1/ log(n)) · k.
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