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Abstract

We prove fractional analogs of the classical Sylvester-Gallai theorem. Our theorems translate
local information about collinear triples in a set of points into global bounds on the dimension
of the set. Specifically, we show that if for every points v in a finite set V ⊂ Cd, there are at
least δ|V | other points u ∈ V for which the line through v, u contains a third point in V , then
V resides in a (13/δ2)-dimensional affine subspace of Cd.

This result, which is one of several variants we study, is motivated by questions in theoretical
computer science and, in particular, from the area of Error Correcting Codes. Our proofs
combine algebraic, analytic and combinatorial arguments. A key ingredient is a new lower
bound for the rank of design matrices, specified only by conditions on their zero / non-zero
pattern.

1 Introduction

In 1893 Sylvester posed the following, well-known problem [1]: “Prove that it is not possible to
arrange any finite number of real points so that a right line through every two of them shall pass
through a third, unless they all lie in the same right line.” This beautiful problem was solved by
Melchior in 1940 [2], and, independently, by Gallai in 1944 in response to a question of Erdos [3].
This statement is commonly known as the Sylvester-Gallai theorem.

It is convenient to re-state this result using the notions of special and ordinary lines. A special
line is a line that contains at least three points from the given set. Lines that contain exactly two
points from the set are called ordinary.

Theorem 1.1 (Sylvester-Gallai theorem). If m distinct points v1, . . . , vm in Rd are not collinear,
then they define at least one ordinary line.

In its contrapositive form, the theorem says that if for every i 6= j in [m] the line through vi, vj
passes through a third point vk 6∈ {vi, vj}, then dim{v1, . . . , vm} ≤ 1, where dim{v1, . . . , vm} is the
dimension of the smallest affine subspace containing the points. In this formulation, the theorem
can be thought of as converting local information (on collinear triples) into a global bound on the
dimension of the system.
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In 1966 Serre [4] asked for a complex version of this theorem. The complex version was first
proved by Kelly [5] using deep results from algebraic geometry. An elementary proof was later
found by Elkies, Pretorius and Swanepoel [6].

Theorem 1.2 (Kelly’s theorem). If m distinct points in Cd are not coplanar, then they define at
least one ordinary line.

Both theorems are tight: In the real case, if all points are collinear (and there are at least three
points) then no line passes through exactly two of them. In the complex plane, one can find non
collinear (but coplanar) configurations of points such that every line passing through two of them
contains a third point.

This work studies scenarios in which the local geometric information is incomplete. We are
no longer in a situation where every line is special, but are only guaranteed that, for every point,
the special lines through this point cover some positive fraction of the set (later we will consider
even more relaxed scenarios). To articulate this scenario we use the following definition: Call the
points v1, . . . , vn ∈ Cd a δ-SG configuration if for every i ∈ [n] there exists at least δn values of
j ∈ [n] such that the line through vi, vj contains a third point in the set. We provide the following
bound over the complex numbers. Later (see Section 4) we will generalize our results to any field
of characteristic zero or of sufficiently large positive characteristic.

Theorem 1.3 (Fractional SG theorem). For any δ > 0, the dimension of a δ-SG configuration
over the complex numbers is at most 13/δ2.

The upper bound on the dimension should be compared with the trivial lower bound of Ω(1/δ)
that arises from a partition of the points into 1/δ generically positioned lines. Here, and for the
rest of the paper, O(·) and Ω(·) are used to hide universal constants only.

One of the motivations for studying this problem is its connection to problems in theoretical
computer science and coding theory. The problem of bounding the dimension of δ-SG configurations
is closely related to locally correctable codes (LCCs). To read more about this connection, we refer
the reader to [7].

In Section 4, using Theorem 1.3 and its proof, we derive the following additional results:

• An analog of Theorem 1.3 with lines replaced with higher dimensional flats (as in Hansen’s
theorem).

• A fractional analog of the Motkin-Rabin theorem which is a two-color version of the Sylvester-
Gallai theorem.

• A three-color ‘non-fractional’ analog of the Motzkin-Rabin theorem (the proof, nevertheless,
uses the ‘fractional’ version in an essential way).

• Average-case versions of Theorem 1.3 in which we are only guaranteed that a quadratic
number of pairs of points are on special lines and find a large subset of points that is low-
dimensional.

• Extensions of Theorem 1.3 to any field of characteristic zero of sufficiently large positive
characteristic (as a function of n).
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Methods: rank of design matrices. The main ingredient in the proof of Theorem 1.3 is a
general lower bound on the rank of matrices with certain zero/non-zero patterns. The connection
between the two problems is not surprising, since both convert local combinatorial information into
global algebraic information (i.e., rank/dimension bounds). The type of zero/non-zero patterns we
consider are called designs:

Definition 1.4 (Design matrix). Let A be an m×n matrix over some field. For i ∈ [m] let Ri ⊂ [n]
denote the set of indices of all non-zero entries in the i’th row of A. Similarly, let Cj ⊂ [m], j ∈ [n],
denote the set of non-zero indices in the j’th column. We say that A is a (q, k, t)-design matrix if

1. For all i ∈ [m], |Ri| ≤ q.

2. For all j ∈ [n], |Cj | ≥ k.

3. For all j1 6= j2 ∈ [n], |Cj1 ∩ Cj2 | ≤ t.

The zero/non-zero pattern of the columns of a design matrix, C1, . . . , Cn, form a design in that
each set is large but the pairwise intersections are small. The following theorem gives a lower bound
on the rank of design matrices and is proved in Section 3.

Theorem 1.5 (Rank bound for design matrices). For every complex matrix A with n columns that
is a (q, k, t)-design,

rank(A) ≥ n−
(
q · t · n

2k

)2

.

To get a feeling of the parameters, consider an m × n matrix with O(1) non-zeros in each
row, with Ω(n) non-zeros in each column and with t = O(1) pairwise intersections of columns;
Theorem 1.5 tells us that such a matrix has almost full rank, n−O(1).

Organization. We begin, in Section 2, with the proof of Theorem 1.3. The main technical tool,
Theorem 1.5 is proved in Section 3. In Section 4 we consider various extensions to Theorem 1.3.

2 Proof of the Fractional SG Theorem

The following lemma is an easy consequence of [8] and will be used in the proof below.

Lemma 2.1. Let r ≥ 3. Then there exists a set T ⊂ [r]3 of r2−r triples that satisfies the following
properties:

1. Each triple (t1, t2, t3) ∈ T is of three distinct elements.

2. For each i ∈ [r] there are exactly 3(r − 1) triples in T containing i as an element.

3. For every pair i, j ∈ [r] of distinct elements there are at most 6 triples in T which contain
both i and j as elements.

Proof. By [8, Theorem 4] there exists a Latin square {Aij}i,j∈[r] with Aii = i for all i ∈ [r]. Taking
all triples of the form (i, j, Aij) with i 6= j proves the Lemma.
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Proof of Theorem 1.3: Let V be the n × d matrix whose i’th row is the vector vi. Assume
w.l.o.g. that v1 = 0. Thus dim{v1, . . . , vn} = rank(V ). We will first build an m× n matrix A that
will satisfy A ·V = 0. Then, we will argue that the rank of A is large because it is a design matrix.
This will show that the rank of V is small.

Consider a special line ` which passes through three points vi, vj , vk. This gives a linear depen-
dency among the three vectors vi, vj , vk. In other words, this gives a vector a = (a1, . . . , an) which
is non-zero only in the three coordinates i, j, k and such that a ·V = 0. If a is not unique, choose an
arbitrary vector a with these properties. Our strategy is to pick a family of collinear triples among
the points in our configuration and to build the matrix A from rows corresponding to these triples
in the above manner.

Let L denote the set of all special lines in the configuration (i.e., all lines containing at least
three points). For each ` ∈ L let V` denote the set of points in the configuration which lie on the
line `. Then |V`| ≥ 3 and we can assign to it a family of triples T` ⊂ V 3

` , given by Lemma 2.1
(we identify V` with [r], where r = |V`| in some arbitrary way). We now construct the matrix A
by going over all lines ` ∈ L and for each triple in T` adding as a row of A the vector with three
non-zero coefficients a = (a1, . . . , an) described above (so that a is the linear dependency between
the three points in the triple).

Since the matrix A satisfies A ·V = 0 by construction, we only have to argue that A is a design
matrix and bound its rank.

Claim 2.2. The matrix A is a (3, 3k, 6)-design matrix, where k = bδnc − 1.

Proof. By construction, each row of A has exactly 3 non-zero entries. The number of non-zero
entries in column i of A corresponds to the number of triples we used that contain the point vi.
These can come from all special lines containing vi. Suppose there are s special lines containing vi
and let r1, . . . , rs denote the number of points on each of those lines. Then, since the lines through
vi have only the point vi in common, we have that

∑s
j=1(rj−1) ≥ k. The properties of the families

of triples T` guarantee that there are 3(rj − 1) triples containing vi coming from the j’th line.
Therefore there are at least 3k triples in total containing vi.

The size of the intersection of columns i1 and i2 is equal to the number of triples containing
the points vi1 , vi2 that were used in the construction of A. These triples can only come from one
special line (the line containing these two points) and so, by Lemma 2.1, there can be at most 6 of
those.

Applying Theorem 1.5 we get that

rank(A) ≥ n−
(

3 · 6 · n
2 · 3k

)2

≥ n−
(

3 · n
δn− 2

)2

≥ n−
(

3 · n · 13

11 · δn

)2

> n− 13/δ2,

where the third inequality holds as δn ≥ 13 since otherwise the theorem trivially holds. This
implies that rank(V ) < 13/δ2, which completes the proof. For δ = 1, the calculation above yields
rank(V ) < 11.
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3 Bounds on the Rank of Design Matrices

In this section we prove Theorem 1.5. For a set of complex vectors V ∈ Cn we denote by rank(V )
the dimension of the vector space spanned by elements of V . We denote the `2-norm of a vector v
by ‖v‖. We denote by In the n× n identity matrix.

The starting point of the proof is the observation that, if the matrix entries are all in the set
{0, 1} then the proof is quite easy: simply consider the product At ·A and observe that its diagonal
elements are much larger than its off-diagonal elements. Such matrices, called diagonal dominant
matrices, are known to have high rank and so A must have high rank as well (c.f. Lemma 3.5
below). The choice of the set {0, 1} is not important – as long as the ratios between different
non-zero entries are bounded, the same proof strategy will work. We reduce to this case using a
technique called matrix-scaling.

Definition 3.1. [Matrix scaling] Let A be an m × n complex matrix. Let ρ ∈ Cm, γ ∈ Cn be
two complex vectors with all entries non-zero. We denote by SC(A, ρ, γ) the matrix obtained from
A by multiplying the (i, j)’th element of A by ρi · γj. We say that two matrices A,B of the same
dimensions are a scaling of each other if there exist non-zero vectors ρ, γ such that B = SC(A, ρ, γ).
It is easy to check that this is an equivalence relation. We refer to the elements of the vector ρ as
the row scaling coefficients and to the elements of γ as the column scaling coefficients. Notice that
two matrices which are a scaling of each other have the same rank and the same pattern of zero
and non-zero entries.

Matrix scaling originated in a paper of Sinkhorn [9] and has been widely studied since (see [10]
for more background). The following is a special case of a theorem from [11] that gives sufficient
conditions for finding a scaling of a matrix which has certain row and column sums.

Definition 3.2 (Property-S). Let A be an m× n matrix over some field. We say that A satisfies
Property-S if for every zero sub-matrix of A of size a× b it holds that

a

m
+
b

n
≤ 1. (1)

Theorem 3.3 (Matrix scaling theorem, Theorem 3 in [11] ). Let A be an m× n real matrix with
non-negative entries which satisfies Property-S. Then, for every ε > 0, there exists a scaling A′ of
A such that the sum of each row of A′ is at most 1 + ε and the sum of each column of A′ is at least
m/n− ε. Moreover, the scaling coefficients used to obtain A′ are all positive real numbers.

We will use the following easy corollary of this theorem obtained by applying it to the matrix
whose elements are the squares of absolute values of A.

Corollary 3.4. Let A = (aij) be an m × n complex matrix which satisfies Property-S. Then, for
every ε > 0, there exists a scaling A′ of A such that for every i ∈ [m]∑

j∈[n]

|aij |2 ≤ 1 + ε

and for every j ∈ [n] ∑
i∈[m]

|aij |2 ≥ m/n− ε.
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We will also use a variant of a well known lemma (see for example [12]) which provides a bound
on the rank of matrices whose diagonal entries are much larger than the off-diagonal ones.

Lemma 3.5. Let A = (aij) be an n× n complex Hermitian matrix and let 0 < ` < L be integers.
Suppose that aii ≥ L for all i ∈ [n] (the diagonal elements of a Hermitian matrix are real) and that
|aij | ≤ ` for all i 6= j. Then

rank(A) ≥ n

1 + n · (`/L)2
≥ n− (n`/L)2.

Proof. We can assume w.l.o.g. that aii = L for all i. If not, then we can make the inequality into
an equality by multiplying the i’th row and column by (L/aii)

1/2 < 1 without changing the rank
or breaking the symmetry. Let r = rank(A) and let λ1, . . . , λr denote the non-zero eigenvalues of
A (counting multiplicities). Since A is Hermitian we have that the λi’s are real. We have

n2 · L2 = tr(A)2 =

(
r∑
i=1

λi

)2

≤ r ·
r∑
i=1

λ2i = r ·
n∑

i,j=1

|aij |2

≤ r · (n · L2 + n2 · `2).

Rearranging we get the required bound. The second inequality in the statement of the lemma
follows from the fact that 1/(1 + x) ≥ 1− x for all x.

Proof of Theorem 1.5: To prove the theorem we will first find a scaling of A so that the norms
(squared) of the columns are large and such that each entry is small. Our first step is to find an
nk× n matrix B that will satisfy Property-S and will be composed from rows of A s.t. each row is
repeated with multiplicity between 0 and q. Such a matrix can be constructed from A as follows:
for each i ∈ [n] let Bi be a k×n submatrix of A with no zeros in the i’th column. Take B to be the
nk × n matrix composed of all matrices Bi, i ∈ [n]. It is easy to check that B satisfies property-S
and that each row of A appears in B at most q times.

Our next step is to obtain a scaling of B and, from it, a scaling of A. Fix some ε > 0 (which
will later tend to zero). Applying Corollary 3.4 we get a scaling B′ of B such that the `2-norm of
each row is at most

√
1 + ε and the `2-norm of each column is at least

√
nk/n− ε =

√
k − ε. We

now obtain a scaling A′ of A as follows: The scaling of the columns are the same as for B′. For
the rows of A appearing in B we take the maximal scaling coefficient used for these rows in B′,
that is, if row i in A appears as rows i1, i2, . . . , iq′ in B, then the scaling coefficient of row i in A′

is the maximal scaling coefficient of rows i1, i2, . . . , iq′ in B′. For rows not in B, we pick scaling
coefficients so that their `2 norm (in the final scaling) is equal to 1. It is easy to verify that the
matrix A′ is a scaling of A such that each row has `2-norm at most

√
1 + ε and each column has

`2-norm at least
√

(k − ε)/q.
Next, consider the matrix M = (A′)∗ · A′, where (A′)∗ is A′ transposed conjugate. Then

M = (mij) is an n×n Hermitian matrix. The diagonal entries of M are exactly the squares of the
`2-norm of the columns of A′. Therefore, mii ≥ (k − ε)/q for all i ∈ [n]. The off-diagonal entries
of M are the inner products of different columns of A′. The intersection of the support of each
pair of different columns is at most t. The norm of each row is at most

√
1 + ε. For every two real

numbers α, β so that α2 + β2 ≤ 1 + ε we have |α · β| ≤ 1/2 + ε′, where ε′ tends to zero as ε tends
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to zero. Therefore |mij | ≤ t · (1/2 + ε′) for all i 6= j ∈ [n]. Applying Lemma 3.5 we get that

rank(A) = rank(A′) ≥ n−
(
q · t(1/2 + ε′) · n

k − ε

)2

.

Since this holds for all ε > 0 it holds also for ε = 0, which gives the required bound.

4 Several Extensions

We now describe several extensions of the fractional Sylvester-Gallai theorem: two average-case
versions, two high-dimensional fractional versions, a two-color fractional version, a three-color non-
fractional version, and statements on other fields (than real and complex numbers).

4.1 Average-case versions

In this section we argue about the case where we only know that there are many collinear triples
in a configuration. We start with the following average-case version in which there is some large
family of collinear triples that satisfies some regularity condition (no pair is in too many triples).
Below we will use this theorem to derive another average-case version in which we only assume
that many pairs are on special lines. In both theorems the conclusion is only that there exists a
large subset that lies in small dimension (which is clearly the strongest qualitative statement one
can hope for in this setting).

Theorem 4.1 (Average-case SG theorem). Let V = {v1, . . . , vm} ⊂ Cd be a set of m distinct
points. Let T be some set of (unordered) collinear triples in V . Suppose |T | ≥ αm2 and that every
two points v, v′ in V appear in at most c triples in T , then there exists a subset V ′ ⊂ V such that
|V ′| ≥ αm/(2c) and dim(V ′) ≤ O(1/α2).

Notice that the bound on the number of triples containing a fixed pair of points is necessary
for the theorem to hold. If we remove this assumption than we could create a counter-example by
arranging the points so that m2/3 of them are on a line and the rest are placed so that every large
subset of them spans the entire space (e.g. in general position). The proof will use the following
hypergraph lemma.

Lemma 4.2. Let H be a 3-regular hypergraph with vertex set [m] and αm2 edges of co-degree at
most c (i.e., for every i 6= j in [m], the set {i, j} is contained in at most c edges). Then there is a
subset M ⊆ [m] of size |M | ≥ αm/(2c) so that the minimal degree of the sub-graph of H induced
by M is at least αm/2.

Proof. We describe an iterative process to find M . We start with M = [m]. While there exists a
vertex of degree less than αm/2, remove this vertex from M and remove all edges containing this
vertex from H. Continuing in this fashion we conclude with a set M such that every point in M
has degree at least αm/2. This process removed in total at most m ·αm/2 edges and thus the new
H still contains at least αm2/2 edges. As the co-degree is at most c, every vertex appears in at
most cm edges. Thus, the size of M is of size at least αm/(2c).

Proof of Theorem 4.1. The family of triples T defines a 3-regular hypergraph on V of co-degree at
most c. Lemma 4.2 thus implies that there is a subset V ′ ⊆ V of size |V ′| ≥ αm/(2c) that is an
(α/2)-SG configuration. By Theorem 1.3, V ′ has dimension at most O(1/α2).
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We now state the second average-case variant of Sylvester-Gallai in which we assume that there
are many pairs on special lines. Here there is no need for further assumption and the proof is by
an easy reduction to Theorem 4.1.

Theorem 4.3 (Average-case SG theorem - 2nd variant). Let V = {v1, . . . , vm} ⊂ Cd be a set of
m distinct points. Suppose that there are at least β ·m2 unordered pairs of points in V that lie on
a special line (i.e., there is a third point collinear with them). Then there exists a subset V ′ ⊂ V
such that |V ′| ≥ (β/6) ·m and dim(V ′) ≤ O(1/β2)

Proof. Let `1, . . . , `t denote the special lines in the configuration V . Let r1, . . . , rt be integers such
that `i contains exactly ri ≥ 3 points from V . The assumption of the theorem implies that

t∑
i=1

(r2i − ri) ≥ 2β ·m2.

We now apply Lemma 2.1 on all t lines to find t sets of triples T1, . . . .Tt such that each Ti contains
triples of points from the line `i. We now have that each Ti contains exactly r2i − ri triples and
that, in each Ti, two points appear in at most 6 triples. This last condition translates also to the
union of the Ti’s since two lines intersect in at most one point. We thus see that the set T = ∪ti=1Ti
satisfies the conditions of Theorem 4.1 with α = 2β and c = 6. We can thus conclude that there
exists a subset V ′ ⊂ V such that |V ′| ≥ (β/6) ·m and dim(V ′) ≤ O(1/β2) as was required.

4.2 Fractional Hansen Theorems

Hansen’s theorem [13] is a high-dimensional version of the SG theorem in which lines are replaced
with higher dimensional flats. Let fl(v1, . . . , vk) denote the affine span of k points, i.e., the points
that can be written as linear combinations with coefficients that sum to one (fl for ‘flat’). We
call v1, . . . , vk independent if their flat is of dimension k − 1 (dimension means affine dimension),
and say that v1, . . . , vk are dependent otherwise. A k-flat is an affine subspace of dimension k. In
the following V is a set of n distinct points in complex space Cd. A k-flat is called ordinary if
its intersection with V is contained in the union of a (k − 1)-flat and a single point. A k-flat is
elementary if its intersection with V has exactly k + 1 points. Notice that for k = 1—the case of
lines—the two notions of ordinary and elementary coincide.

For dimensions higher than one, there are two different definitions that generalize that of SG
configuration. The first definition is based on ordinary k-flats. The second definition, which is less
restricted than the first one, uses elementary k-flats (like in Hansen’s theorem).

Definition 4.4. The set V is a δ-SG∗k configuration if for every independent v1, . . . , vk ∈ V there
are at least δn points u ∈ V s.t. either u ∈ fl(v1, . . . , vk) or the k-flat fl(v1, . . . , vk, u) contains a
point w ∈ V outside fl(v1, . . . , vk) ∪ {u}.

Definition 4.5. The set V is a δ-SGk configuration if for every independent v1, . . . , vk ∈ V there are
at least δn points u ∈ V s.t. either u ∈ fl(v1, . . . , vk) or the k-flat fl(v1, . . . , vk, u) is not elementary.

Both definitions coincide with that of SG configuration when k = 1: Indeed, fl(v1) = v1 and
fl(v1, u) is the line through v1, u. Therefore, u is never in fl(v1) and the line fl(v1, u) is not elementary
iff it contains at least one point w 6∈ {v1, u}.
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We prove two high-dimensional versions of the SG theorem, each corresponding to one of the
definitions above. Both theorems hold over the complex numbers (as well as over the real numbers).
To the best of our knowledge, no complex-numbers version of Hansen’s theorem was previously
known.

Theorem 4.6. Let V be a δ-SG∗k configuration. Then dim(V ) ≤ f(δ, k) with f(δ, k) = O
(
(k/δ)2

)
.

Theorem 4.7. Let V be a δ-SGk configuration. Then dim(V ) ≤ g(δ, k) with g(δ, k) = 2C
k
/δ2,

with C > 1 a universal constant.

The proofs of the two theorems are below. Theorem 4.6 follows by an appropriate induction on
the dimension, using the (one-dimensional) robust SG theorem. Theorem 4.7 follows by reduction
to Theorem 4.6.

Before proving the theorems we set some notation. Fix some point v0 ∈ V . By a normalization
w.r.t. v0 we mean a mapping N : V 7→ Cd which first shifts all points by −v0 (so that v0 goes to
zero), then picks a hyperplane H s.t. no point in V (after the shift) is parallel to H (i.e., has inner
product zero with the orthogonal vector to H) and finally multiplies each point (other than zero)
by a constant s.t. it is in H. Note that all points on a single line through v0 map to the same image
under N . Observe also that for any such mapping N we have dim(N(V )) ≥ dim(V )− 1 since the
shifting can decrease the dimension by at most one and the scaling part maintains the dimension.
Another property which holds for N is:

Claim 4.8. For such a mapping N we have that v0, v1, . . . , vk are dependent iff N(v1), . . . , N(vk)
are dependent.

Proof. Since translation and scaling does not affect dependence, w.l.o.g. we assume that v0 = 0
and that the distance of the hyperplane H from zero is one. Let h be the unit vector orthogonal
to H. For all i ∈ [k] we have N(vi) = vi/〈vi, h〉. Assume that v0, v1, . . . , vk are dependent, that is,
w.l.o.g. vk =

∑
i∈[k−1] aivi for some a1, . . . , ak−1. For all i ∈ [k − 1] define bi = ai〈vi, h〉/〈vk, h〉.

Thus N(vk) =
∑

i∈[k−1] aivi/〈vk, h〉 =
∑

i∈[k−1] biN(vi) where
∑

i∈[k−1] bi = 1, which means that
N(v1), . . . , N(vk) are dependent. Since the map ai 7→ bi is invertible, the other direction of the
claim holds as well.

We first prove the theorem for δ-SG∗k configurations.

Proof of Theorem 4.6. The proof is by induction on k. For k = 1 we know f(δ, 1) ≤ cδ−2 with
c > 1 a universal constant. Suppose k > 1. We separate into two cases. The first case is when V is
an (δ/(2k))-SG1 configuration and we are done using the bound on k = 1. In the other case there
is some point v0 ∈ V s.t. the size of the set of points on special lines through v0 is at most δn/(2k)
(a line is special if it contains at least three points). Let S denote the set of points on special lines
through v0. Thus |S| < δn/(2k). Let N : Cd 7→ Cd be a normalization w.r.t. v0. Notice that for
points v 6∈ S the image N(v) determines v. Similarly, all points on some special line map to the
same point via N .

Our goal is to show that V ′ = N(V \ {v0}) is a ((1 − 1/(2k))δ)-SG∗k−1 configuration (after
eliminating multiplicities from V ′). This will complete the proof since dim(V ) ≤ dim(V ′) + 1.
Indeed, if this is the case we have

f(δ, k) ≤ max{4c(k/δ)2, f((1− 1/(2k))δ, k − 1) + 1}.
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and by induction we have f(δ, k) ≤ 4c(k/δ)2.
Fix v′1, . . . , v

′
k−1 ∈ V ′ to be k− 1 independent points (if no such tuple exists then V ′ is trivially

a configuration). Let v1, . . . , vk−1 ∈ V be points s.t. N(vi) = v′i for i ∈ [k − 1]. Claim 4.8 implies
that v0, v1, . . . , vk−1 are independent. Thus, there is a set U ⊂ V of size at least δn s.t. for every
u ∈ U either u ∈ fl(v0, v1, . . . , vk−1) or the k-flat fl(v0, v1, . . . , vk−1, u) contains a point w outside
fl(v0, v1, . . . , vk−1) ∪ {u}.

Let Ũ = U \ S so that N is invertible on Ũ and

|Ũ | ≥ |U | − |S| ≥ (1− 1/(2k))δn.

Suppose u ∈ Ũ and let u′ = N(u). By Claim 4.8 if u ∈ fl(v0, v1, . . . , vk−1) then u′ is in fl(v′1, . . . , v
′
k−1).

Otherwise, fl(v0, v1, . . . , vk−1, u) contains a point w outside fl(v0, v1, . . . , vk−1)∪{u}. Let w′ = N(w).
We will show that w′ is (a) contained in the (k − 1)-flat fl(v′1, . . . , v

′
k−1, u

′) and (b) is outside
fl(v′1, . . . , v

′
k−1) ∪ {u′}. Property (a) follows from Claim 4.8 since v0, v1, . . . , vk−1, u,w are depen-

dent and so v′1, . . . , v
′
k−1, u

′, w′ are also dependent. To show (b) observe first that by Claim 4.8 the
points v′1, . . . , v

′
k−1, u

′ are independent (since v0, v1, . . . , vk−1, u are independent) and so u′ is not in
fl(v′1, . . . , v

′
k−1). We also need to show that w′ 6= u′ but this follows from the fact that u 6= w and

so w′ = N(w) 6= N(u) = u′ since N is invertible on Ũ and u ∈ Ũ . Since

|N(Ũ)| = |Ũ | ≥ (1− 1/(2k))δn ≥ (1− 1/(2k))δ|V ′|

the proof is complete.

We can now prove the theorem for δ-SGk configurations.

Proof of Theorem 4.7. The proof follows by induction on k (the case k = 1 is given by Theorem 1.3).
Suppose k > 1. Suppose that dim(V ) > g(δ, k). We want to show that there exist k independent
points v1, . . . , vk s.t. for at least 1 − δ fraction of the points w ∈ V we have that w is not in
fl(v1, . . . , vk) and the flat fl(v1, . . . , vk, w) is elementary (i.e., does not contain any other point).

Let k′ = g(1, k − 1). By choice of g we have g(δ, k) > f(δ, k′ + 1) with f from Theorem 4.6.
Thus, by Theorem 4.6, we can find k′+ 1 independent points v1, . . . , vk′+1 s.t. there is a set U ⊂ V
of size at least (1 − δ)n s.t. for every u ∈ U we have that u is not in fl(v1, . . . , vk′+1) and the
(k′ + 1)-flat fl(v1, . . . , vk′+1, u) contains only one point, namely u, outside fl(v1, . . . , vk′+1).

We now apply the inductive hypothesis on the set V ∩ fl(v1, . . . , vk′+1) which has dimension
at least k′ = g(1, k − 1). This gives us k independent points v′1, . . . , v

′
k that define an elementary

(k − 1)-flat fl(v′1, . . . , v
′
k). (Saying that V is not 1-SGk−1 is the same as saying that it contains an

elementary (k− 1)-flat). Joining any of the points u ∈ U to v′1, . . . , v
′
k gives us an elementary k-flat

and so the theorem is proved.

4.3 A fractional Motzkin-Rabin Theorem

The Motzkin-Rabin theorem is a two-color variant of the Sylvester-Gallai theorem. Here we prove
a fractional version of it.

Definition 4.9 (δ-MR configuration). Let V1, V2 be two disjoint finite subsets of Cd. Points in V1
are of color 1 and points in V2 are of color 2. A line is called bi-chromatic if it contains at least
one point from each of the two colors. We say that V1, V2 are a δ-MR configuration if for every
i ∈ [2] and for every point p ∈ Vi, the bi-chromatic lines through p contain at least δ|Vi| points from
Vi.

10



Theorem 4.10. Let V1, V2 ⊂ Cd be a δ-MR configuration. Then

dim(V1 ∪ V2) ≤ O(1/δ4).

Proof. We will call a line passing through exactly two points in V1 (resp. V2) a V1-ordinary (resp.
V2-ordinary) line. W.l.o.g. assume |V1| ≤ |V2|. We seperate the proof into two cases:

Case I is when V2 is a (δ/2)-SG configuration. Then, by Theorem 1.3, dim(V2) ≤ O(1/δ2). If in
addition dim(V1) ≤ 13/(δ/2)2 then we are done. Otherwise, by Theorem 1.3, there exists a point
a0 ∈ V1 such that there are at least (1 − δ/2)|V1| V1-ordinary lines through a0. Let a1, . . . , ak
denote the points in V1 that belong to these lines with k ≥ (1 − δ/2)|V1|. We now claim that
V2 ∪ {a0} spans all the points in V1. This will suffice since, in this case, dim(V2) ≤ O(1/δ2). Let
a ∈ V1. Then, since V1, V2 is a δ-MR configuration, there are at least δ|V1| points in V1 such that
the line through them and a contains a point in V2. One of these points must be among a1, . . . , ak,
say it is a1. Since a is in the span of V2 and a1 and since a1 is in the span of V2 and a0 we are done.

Case II is when V2 is not a (δ/2)-SG configuration. In this case, there is a point b ∈ V2 such
that there are at least (1−δ/2)|V2| V2-ordinary lines through b. From this fact and from the δ-MR
property, we get that |V1| ≥ (δ/2)|V2| (there are at least (δ/2)|V2| V2-ordinary lines through b that
have an additional point from V1 on them). This implies that the union V1 ∪ V2 is a (δ2/4)-SG
configuration since δ|Vi| ≥ (δ2/4)|V1 ∪ V2|. and the result follows by applying Theorem 1.3.

4.4 A three-color variant

Having the flexibility of arguing about δ-SG configurations is also handy in proving theorems
where there is no partial information. We demonstrate this by proving a three-color analog of the
Motzkin-Rabin theorem.

Definition 4.11 (3MR configuration). Let V1, V2, V3 be three pairwise disjoint finite subsets of
Cd, each of distinct points. We say that V1, V2, V3 is a 3MR-configuration if every line ` so that
` ∩ (V1 ∪ V2 ∪ V3) has more than one point intersects at least two of the sets V1, V2, V3.

Theorem 4.12. Let V1, V2, V3 be a 3MR configuration and denote V = V1 ∪ V2 ∪ V3. Then

dim(V ) ≤ O(1).

Proof. Assume w.l.o.g. that V1 is not smaller than V2, V3. Let α = 1/16. There are several cases
to consider:

1. V1 is an α-SG configuration. By Theorem 1.3, the dimension of V1 is at most

d1 = O(1).

Consider the two sets
V ′2 = V2 \ span(V1) and V ′3 = V3 \ span(V1),

each is a set of distinct points in Cd. Assume w.l.o.g. that |V ′2 | ≥ |V ′3 |.
1.1. V ′2 is an α-SG configuration. By Theorem 1.3, the dimension of V ′2 is at most

d2 = O(1).

Fix a point v3 in V ′3 . For every point v 6= v3 in V ′3 the line through v3, v contains a point from
span(V1) ∪ V ′2 . Therefore,

dim(V ) ≤ d1 + d2 + 1 ≤ O(1).
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1.2. V ′2 is not an α-SG configuration. There is a point v2 in V ′2 so that for k ≥ |V ′2 |/2
of the points v 6= v2 in V ′2 the line through v2, v does not contain any other point from V ′2 . If
V ′2 = span(V1, v2) then the dimension of V1 ∪ V2 is at most d1 + 1 and we are done, as in the
previous case. Otherwise, there is a point v′2 in V ′2 \ span(V1, v2).

We claim that in this case |V ′3 | ≥ k/2. Denote by P2 the k points v 6= v2 in V ′2 so that the line
through v2, v does not contain any other point from V ′2 . For every v ∈ P2 there is a point V1,3(v)
in V1 ∪ V3 that is on the line through v, v2 (the point v2 is fixed). There are two cases to consider.
(i) The first case is that for at least k/2 of the points v in P2 we have V1,3(v) ∈ V ′3 . In this case
clearly |V ′3 | ≥ k/2. (ii) The second case is that for at least k/2 of the points v in P2 we have
V1,3(v) 6∈ V ′3 . This means that these points V1,3(v) are in span(V1). Fix such a point v ∈ P2 (which
is in span(V1, v2)). The line through v′2, v contains a point v′ from V1 ∪ V3. The point v′ is not in
span(V1), as if it was then v′2 would be in span(v, v′) ⊆ span(V1, v2). Therefore v′ is in V ′3 . This
also implies that |V ′3 | ≥ k/2.

Denote V ′ = V ′2 ∪ V ′3 . So we can conclude that for every v′ in V ′ the special lines through v′

contain at least |V ′|/8 of the points in V1 ∪ V2 ∪ V3. As in the proof of Theorem 1.3, we can thus
define a family of triples T , each triple of three distinct collinear points in V , so that each v′ in V ′

belongs to at least |V ′|/8 triples in T and each two distinct v′, v′′ in V ′ belong to at most 6 triples.
By a slight abuse of notation, we also denote by V the matrix with rows defined by the points

in V . Let V1 be the submatrix of V with row defined by points in span(V1) ∩ V and V ′ be the
submatrix of V with row defined by points in V ′. Use the triples in T to construct a matrix
A so that A · V = 0. Let A1 be the submatrix of A consisting of the columns that correspond
to span(V1) ∩ V and A′ be the submatrix of A consisting of the columns that correspond to V ′.
Therefore, A′ · V ′ = −A1 · V1 which implies

rank(A′ · V ′) ≤ rank(A1 · V1) ≤ d1.

By the above discussion A′ is a (3, |V ′|/8, 6)-design matrix and thus, by Theorem 1.5, has rank at
least

|V ′| −O(1)

and so
dim(V ′) ≤ O(1) + d1 ≤ O(1).

We can finally conclude that

dim(V ) ≤ d1 + dim(V ′) ≤ O(1).

2. V1 is not an α-SG configuration. There is a point v1 in V1 so that for at least |V1|/2 of
the points v 6= v1 in V1 the line through v1, v does not contain any other point from V1. Assume
w.l.o.g. that |V2| ≥ |V3|. This implies that

|V2| ≥ |V1|/4.

2.1. |V3| < |V2|/16. In this case the configuration defined by V1 ∪ V2 is an α-SG configuration:
Fix a point v1 ∈ V1 (a similar argument works for every v2 ∈ V2). We need to show that there

are many special lines through v1. There are two options: Either (a) there are |V1|/2 points v′1 6= v1
in V1 with a third point from V1 on the line through v1, v

′
1, or (b) there are |V1|/2 points v′1 6= v1 in

V1 so that the line v1, v
′
1 contains a third point from V2 ∪V3. If case (a) holds, the point v1 satisfies
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the required property. If case (b) holds, since |V3| < |V2|/16|, for at least |V1|/4 points v′1 ∈ V1, the
line through v1, v

′
1 contains a third point from V2.

By Theorem 1.3, the dimension of V1 ∪ V2 is at most

d1,2 = O(1).

Fix a point v3 in V3. For every point v 6= v3 in V3 the line through v3, v contains a point from
V1 ∪ V2. Therefore,

dim(V ) ≤ d1,2 + 1.

2.2. |V3| ≥ |V2|/16. In this case V is an α-SG configuration since |Vi| ≥ α|V | for each
i ∈ {1, 2, 3}. By Theorem 1.3, the dimension of V is thus at most O(1).

4.5 Other fields

In this section we show that our results can be extended from the complex field to fields of charac-
teristic zero, and even to fields with very large positive characteristic. The argument is quite generic
and relies on Hilbert’s Nullstellensatz. We only discuss Theorem 1.5 since all other theorems follow
from it over any field.

Definition 4.13 (T -matrix). Let m,n be integers and let T ⊂ [m]× [n]. We call an m× n matrix
A a T -matrix if all entries of A with indices in T are non-zero and all entries with indices outside
T are zero.

Theorem 4.14 (Effective Hilbert’s Nullstellensatz [14]). Let g1, . . . , gs ∈ Z[y1, . . . , yt] be degree d
polynomials with coefficients in {0, 1} and let

Z , {y ∈ Ct | gi(y) = 0 ∀i ∈ [s]}.

Suppose h ∈ Z[z1, . . . , zt] is another polynomial with coefficients in {0, 1} which vanishes on Z.
Then there exist positive integers p, q and polynomials f1, . . . , fs ∈ Z[y1, . . . , yt] such that

s∑
i=1

fi · gi ≡ p · hq.

Furthermore, one can bound p and the maximal absolute value of the coefficients of the fi’s by an
explicit function H0(d, t, s).

Theorem 4.15. Let m,n, r be integers and let T ⊂ [m]× [n]. Suppose that all complex T -matrices
have rank at least r. Let F be a field of either characteristic zero or of finite large enough character-
istic p > P0(n,m), where P0 is some explicit function of n and m. Then, the rank of all T -matrices
over F is at least r.

Proof. Let g1, . . . , gs ∈ C[{xij | i ∈ [m], j ∈ [n]}] be the determinants of all r × r sub-matrices of
an m× n matrix of variables X = (xij). The statement “all T -matrices have rank at least r” can
be phrased as “if xij = 0 for all (i, j) 6∈ T and gk(X) = 0 for all k ∈ [s] then

∏
(i,j)∈T xij = 0.”

That is, if all entries outside T are zero and X has rank smaller than r then it must have at least
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one zero entry also inside T . From Nullstellensatz we know that there are integers α, λ > 0 and
polynomials f1, . . . , fs and hij , (i, j) 6∈ T , with integer coefficients such that

α ·

 ∏
(i,j)∈T

xij

λ

≡
∑

(i,j)6∈T

xij · hij(X) +
s∑

k=1

fi(X) · gi(X). (2)

This identity implies the high rank of T -matrices also over any field F in which α 6= 0. Since we
have a bound on α in terms of n and m the result follows.

Corollary 4.16. Theorem 1.3 holds over any field of characteristic zero or of sufficiently large (as
a function of the number of points) positive characteristic.

The meaning of “sufficiently large” in the corollary does not depend on n, the underlying
dimension, via a random linear projection of the m points to an m-dimensional space (if n > m).

Acknowledgements

We thank Moritz Hardt for many helpful conversations. We thank Jozsef Solymosi for helpful
comments.

References

[1] J. J. Sylvester. Mathematical question 11851. Educational Times, 59:98, 1893.

[2] E. Melchior. Uber vielseite der projektive ebene. Deutsche Math., 5:461–475, 1940.

[3] P. Erdos. Problems for solution: 40654069, 1943.

[4] S.P. Serre. Problem 5359. Am. Math. Monthly 73, page 89, 1966.

[5] L. M. Kelly. A resolution of the Sylvester-Gallai problem of J. P. Serre. Discrete & Compu-
tational Geometry, 1:101–104, 1986.

[6] L. M. Pretorius Elkies, N. D. and K. J. Swanepoel. Sylvester-Gallai theorems for complex
numbers and quaternions,. Discrete and Computational Geometry, 35(3):361–373, 2006.

[7] B. Barak, Z. Dvir, A. Yehudayoff, and A. Wigderson. Rank bounds for design matrices with
applications to combinatorial geometry and locally correctable codes. In Proceedings of the
43rd annual ACM symposium on Theory of computing, STOC ’11, pages 519–528, New York,
NY, USA, 2011. ACM.

[8] A. J. W. Hilton. On double diagonal and cross Latin squares. J. London Math. Soc., s2-
6(4):679–689, 1973.

[9] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matri-
ces. Ann. Math. Statist., 35:876–879, 1964.

[10] N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly polynomial algorithm
for matrix scaling and approximate Permanents. Combinatorica, 20(4):545–568, 2000.

14



[11] U. Rothblum and H. Schneider. Scaling of matrices which have prespecified row sums and
column sums via optimization. Linear Algebra Appl, 114-115:737–764, 1989.

[12] N. Alon. Perturbed identity matrices have high rank: Proof and applications. Comb. Probab.
Comput., 18(1-2):3–15, 2009.

[13] S. Hansen. A generalization of a theorem of Sylvester on the lines determined by a finite point
set. Mathematica Scandinavia, 16:175–180, 1965.

[14] J. Kollár. Sharp effective Nullstellensatz. J. Amer. Math. Soc., 1:963–975, 1988.

15


