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Abstract

This text is meant to be an introduction to a recent strategy introduced by Bourgain and
Gamburd (following a work of Helfgott) for proving graph-expansion. The strategy is designed
for graphs H that are defined using some underlying group G.

The strategy consists of three steps, which, in Sarnak’s terminology, correspond to the three
steps of a chess game: opening, middle-game and endgame. In the opening, the objective is to
prove that the girth of H is logarithmic. In the middle-game, the goal is to prove a product-
growth theorem for subsets of G. The endgame consists of establishing a “mixing property”
for G. There are two methods for proving a mixing property: using pairwise independence and
using basic representation theory.

1 Introduction

Expanders are graphs with good connectivity properties. They turn out to be extremely useful in
many areas of research. This column does not discuss the vast applications of expanders, but rather
focuses on describing an approach for constructing such graphs, or, more precisely, proving that a
given graph is an expander. For a detailed survey of applications and properties of expanders, see
[11].

There are, in general, three strategies for building expanders or proving that a given graph is an
expander. The historically first strategy was suggested by Margulis [15] and is algebraic in nature3

(see also [14]). The second approach is combinatorial and iterative in nature. It was pioneered by
the zig-zag product of Reingold, Vadhan and Wigderson [17]. The third approach is analytic and
uses additive combinatorics. This approach was introduced in the works of Bourgain and Gamburd
[2, 3] that use ideas from the works of Helfgott [10] and Sarnak and Xue [19]. This approach is
quite general and enables to prove expansion in cases that were not known before.

The aim of this text is to be a tutorial to the third. We choose simplicity over abstractness:
Statements far more general than the ones we provide here are available in the literature, e.g.
[16, 5]. Although this text is self-contained, it is only meant to serve as an introduction to this line
of research, and some parts are not fully explained.

1 c©A. Yehudayoff, 2012.
2Department of Mathematics, Technion-IIT, Haifa, Israel. amir.yehudayoff@gmail.com. Horev fellow – supported

by the Taub foundation. Supported by grants from ISF and BSF.
3Gabber and Galil [8] in fact found a way to use elementary harmonic analysis to prove that one of Margulis’

constructions works. Davidoff, Sarnak and Valette [6] gave a proof that a different graph is an expander using
elementary counting and basic representation theory.
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We start with a formal introduction to expander graphs. We later discuss two generic ways
in which groups define graphs. Most of the text provides a glance into the three-step proof of
Bourgain and Gamburd [3, 2, 10, 4].

1.1 Expander graphs

We provide two formal definitions of expander graphs and discuss a third one. Each definition
provides a different point of view of expanders. There are more equivalent definitions (see [11])
that are extremely important in applications but we shall not consider here. The term “an expander
graph” always refers to an infinite family of graphs {Hn} of increasing sizes. As we shall see, the
definition is not interesting for a single graph.

The first property required from a family of expander graphs is to have constant degree. For
simplicity and concreteness, all families of expander graphs we discuss are d-regular, for a constant
d independent of n.

We define expanders via “edge expansion” and state that it is equivalent to a spectral definition.
Let H = (V, E) be a d-regular graph. The edge expansion h(H) of H is the smallest normalized
size of a cut in H: For every A ⊂ V , denote by E(A,A) the set of edges with one endpoint in A
and one endpoint not in A. Define

h(H) = min
{
|E(A,A)|

d|A|
: A ⊂ V, 0 < |A| ≤

|V |

2

}
.

Definition (expander). The graph H is called an expander, if there exists ε > 0, a constant
independent of the size of H, so that h(H) ≥ ε.

The spectral gap γ(H) of H is the spectral gap of the normalized adjacency matrix of H: The
graph H defines a normalized adjacency matrix M by

Mv,u =
{

1/d {v, u} ∈ E,
0 {v, u} �∈ E.

The matrix M is symmetric so it has n = |V | real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Since it is
normalized, all eigenvalues are in [−1, 1]. Always λ1 = 1, corresponding to the all-ones eigenvector
1. When H is connected, this is the only eigenvector of eigenvalue 1. When H is not bi-partite4,
λn > −1. Define the spectral gap of H as

γ(H) = 1 − λ2.

The following well-known theorem shows that expansion can be cast using γ(H) too (see [11]
and references within).

Theorem 1 (Cheeger’s inequality). For every d-regular graph H,

γ(H)
2

≤ h(H) ≤
√

2γ(H).

4When H is bi-partite, a slightly different discussion is required.
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This fundamental inequality translates algebraic information to a combinatorial one and vice
versa. Specifically, it shows that we could have defined “expander” by γ(H) ≥ ε, for some constant
ε > 0. We shall not provide a proof here, but we shortly discuss the proof idea, as it may help to
gain intuition. There are two inequalities to prove.

To prove the left inequality assume that γ(H) is greater than zero. Consider a set A of vertices
with minimal-size normalized cut. Define the vector x in RV as xv = 1 − |A|/n when v ∈ A and
xv = −|A|/n otherwise. The idea is to consider 〈x, Mx〉 in two ways. On one hand, 〈x, Mx〉
measures the cut-size of A. On the other hand, when decomposing x as a linear combination of the
orthonormal eigenvectors of M , since x is orthogonal to 1, the inequality follows.

The right inequality is harder to prove. It states that if γ(H) is close to zero, then the edge
expansion is small, namely, that there is a set A of vertices with few edges in E(A,A). The idea is
to consider x, the eigenvector of M that corresponds to λ2 = 1 − γ(H), and use it to define a set
A. The way to define A using x is to use some threshold t ∈ R and choose A as the set of vertices
v so that xv ≥ t.

A third definition of expanders is based on entropy of random walks. A (simple) random walk on
a graph G is a random sequence of vertices v0, v1, v2, . . . so that vt+1 is a uniform random neighbor
of vt, independent of all previous choices. The distribution of the starting vertex v0 is called the
initial distribution. The distribution of vt is denoted in this text as μt. A stationary distribution
for a regular graph is uniform: if the initial distribution is the uniform distribution u, then μ1 is
also uniform, μ2 is too and so forth.

The second law of thermodynamics says that entropy increases with time. The entropy in our
context is measured as 1/ ‖μt‖

2
2 (this is the exponential of the Rényi entropy). This entropy indeed

does not decrease with time (other “types” of entropy may decrease with time). The maximal
entropy is achieved by the uniform distribution 1/ ‖u‖2

2 = |G|. A third possible definition of an
“expander graph” can be as a graph on which the entropy increments are bounded from below
so that in logarithmic time the entropy becomes very close to maximal (regardless of the initial
distribution). We shall use this intuition as well.

Before we provide explicit examples of expander graphs, we explain how can one use groups to
define graphs. The expanders we discuss are group-based graphs.

1.2 Group-based graphs

Consider a group G. A key example we consider is the group of two by two matrices with determi-
nant one over some prime field F,

SL2(F) =
{(

a b
c d

)
: a, b, c, d ∈ F, ad − bc = 1

}
.

The group operation in this example is simply product of matrices.
We start by describing the family of Cayley graphs G defines (see also [11]): Let S be a finite

subset of G. Denote S−1 = {g−1 : g ∈ S}. The vertices of the Cayley graph Cay(G, S) are the
elements of G and its edges are of the form (g, sg) for all g in G and s in S ∪ S−1 (it is hence
an undirected graph). Cayley graphs are highly symmetric graphs, specifically, they are vertex
transitive. If the set S generates G, 〈S〉 = G, then Cay(G, S) is connected (and vice versa).
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As an example consider the subset of SL2(F), for F large but finite,

S =
{(

1 2
0 1

)
,

(
1 0
2 1

)}
. (1)

The graph Cay(SL2(F), S) is connected, of size |SL2(F)| ∼ |F|3 and is four-regular.
A more general family of graphs is that of Schreier diagrams: The group G can act on some set

X. An action of G on X is a homomorphism from g to functions from X to X, namely, every g in
G defined a map5 g(·) from X to X so that for every g′ in G,

g(g′(·)) = (gg′)(·).

Specifically, g(·) is invertible with inverse (g−1)(·). Given a finite subset S of G, we can again use
it to define a graph, Sch(G, S, X). The vertex set of the graph is X and the edges are of the form
(x, s(x)) for x in X and s in S ∪ S−1. A Cayley graph is a Schreier diagram w.r.t. the action of G
on itself by left-multiplication: g(h) = gh.

Another example of a group action is the Möbius action of SL2(F) on the projective line P (F) =
F ∪ {∞} defined by

g(x) =
ax + b

cx + d
, where g =

(
a b
c d

)
.

Here one can interpret operations using infinity in the natural way (e.g. 1/∞ = 0). It is easy to
verify that this is indeed an action:

g(g′(x)) =
aa′x+b′

c′x+d′ + b

ca′x+b′

c′x+d′ + d
=

x(aa′ + bc′) + ab′ + bd′

x(ca′ + dc′) + cb′ + dd′
= (gg′)(x).

When S is the set defined in (1), the diagram Sch(SL2(F), S, P (F)) is connected, has |F|+1 vertices
and is four-regular.

There are two useful families of actions that we consider: transitive and two-transitive. An
action of G on X is transitive if for every x1, x2 in X, there is g in G so that gx1 = x2. A simple
example is the action of G on itself by left-multiplication. A Schreier diagram with S that generates
G is connected iff the action is transitive. An action is two-transitive if the action it defines on
distinct pairs in X is transitive, that is, for every x1 �= x2 and x3 �= x4 in X, there is g in G so
that g(x1) = x3 and g(x2) = x4. The family of two-transitive actions is much smaller than that
of transitive actions. Two well-known examples of two-transitive actions is (i) the affine group
acting on the underlying field and (ii) the Möbius action defined above. Two-transitive actions
define pairwise independent hash functions, and the use of two-transitivity here is similar to the
way pairwise independent hashing is typically used.

We explain why the Möbius action is two-transitive (it is in fact three-transitive). Let x1 �= x2

be two distinct elements of F. We find a matrix g ∈ SL2(F) that maps the pair (x1, x2) to the pair
(0, 1): First choose g1 ∈ SL2(F) that maps (x1, x2) to (0, x2 − x1),

g1 =
(

1 −x1

0 1

)
.

5This is a slight abuse of notation.
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Second choose g2 ∈ SL2(F) that maps (0, x2 − x1) to (0, 1),

g2 =
(

1 0
1 − 1/(x2 − x1) 1

)
.

So the matrix g = g2g1 maps (x1, x2) to (0, 1) as wished (a similar construction works when one of
x1, x2 is infinity). Since every group element has an inverse, this implies that the action is indeed
two-transitive: if g maps (x1, x2) to (0, 1), and g′ maps (x3, x4) to (0, 1), then g′−1g maps (x1, x2)
to (x3, x4).

1.3 Main example and some comments

The historically first construction of an explicit expander graph is a Schreier diagram that is due to
Margulis [15]. We shall not prove that Margulis’ construction works, but we shall explain how to
prove that a similar construction works. Our main example is a Schreier diagram with the group
G = SL2(F) where F is a prime field of size p, the set S defined in (1), and the Möbius action of G
on X = P (F). A similar proof shows that the Cayley graph defined by these G, S is an expander.
We choose the Schreier diagram example to emphasize the generality of the approach, and since
some parts of the proof are only relevant to Schreier diagrams (e.g. there is no two-transitive action
of G on itself). The proof generalizes to other cases as well.

We give a simple example that emphasizes the strength of this proof technique compared to
previous algebraic techniques. Consider three sets of generators S1, S2, S3 defined by

Si =
{(

1 i
0 1

)
,

(
1 0
i 1

)}
, i ∈ {1, 2, 3}.

So S2 is S we chose above. Lubotzky 1-2-3 question [13] asks whether all three Cay(G, Si) are
expanders for G = SL2(F) and a large prime field F. The “algebraic” method for proving expansion
(specifically Selberg’s theorem) implies that Cay(G, S1),Cay(G, S2) are expanders, but does not
imply that Cay(G, S3) is an expander. In fact, that Cay(G, S2) is an expander can be proved in
an elementary manner by counting cycles in the graph and using dimension-multiplicity (see the
endgame, Section 5.2) as was done in [19, 6]. In [2] Bourgain and Gamburd, when introducing the
technique we survey here, solved the question and proved that the answer is yes, all three graphs
are expanders.

Before moving to proofs, we describe two applications of this machinery. The first is related to
quantum computing. Bourgain and Gumburd [2] used this method to prove expansion in the group
of two by two unitary matrices SU(2). This was used by Bourgain to show optimal convergence
of the Solovay-Kitaev algorithm (see [7] and references within). The second is a construction of
monotone expanders. In [4] expansion in SL2(R), the group of two by two real matrices with
determinant one, was proved, and then used to give the only construction known of monotone
expanders.

2 The game

We describe an argument, following Bourgain and Gamburd [2, 3], for proving that Sch(G, S, X),
Cay(G, S) are expanders. The proof consists of three steps. In Sarnak’s terms [18], these three
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steps correspond to the three steps of a chess game: opening, middle-game and endgame. As in
chess, each step in the proof has a different objective and hence strategy.

To prove expansion using this approach, we need to prove three lemmas (or variants of them)
that correspond to the three steps above. In this section, we state the lemmas for general G, S, X
with the relevant conditions, and show how to combine the lemmas to a proof. In later sections,
we discuss each lemma separately, with a focus on our main example (G = SL2(F), S as in (1), and
the Möbius action on X = P (F)).

Opening. In the opening stage, we just argue that Cay(G, S) has large girth (the girth of a graph
is the length of the shortest cycle in it). As we shall see, except from the trivial requirement
〈S〉 = G, this is the only step that uses properties of S.

Lemma 2. There exists a universal constant c1 > 0 so that the graph Cay(G, S) has girth at
least6 c1 log |G|.

Middle-game. In the middle-game, a product growth statement is required (the first instantiation
of such a lemma was proved by Helfgott [10]). This step just depends on the group (it does
not use S nor the action).

Lemma 3. There exists a constant c > 0 so that the following holds. For every δ > 0, there
exists ε > 0 so that for every A ⊂ G of size |A| ≤ |G|1−δ so that 〈A〉 = G,

|A · A · A| ≥ c|A|1+ε,

where A · A · A = {a1a2a3 : a1, a2, a3 ∈ A}.

Endgame. The last step requires proving a mixing property. This is the only step that is related
to the action of G on X.

Lemma 4. There exists a universal constant c2 > 0 so that for every probability distribution
μ on G and for every f : X → R so that

∑
x∈X f(x) = 0,

‖μ ∗ f‖2
2 ≤

|G|

|G|c2
‖μ‖2

2 ‖f‖
2
2 ,

where ∗ is convolution: μ ∗ f : X → R defined by

(μ ∗ f)(x) =
∑
g∈G

μ(g)f(g−1(x)).

These are the three lemmas that guarantee that H = Sch(G, S, X) is an expander. The goal
will (thus) be to prove that λ = λ(H) = 1 − γ(H) is uniformly bounded away from one. We
shall also use the intuition that we wish to prove that the entropy of a random walk increases
rapidly and becomes close to maximal in logarithmic time. Although we are eventually interested
in Sch(G, S, X), we shall first consider the behavior of a random walk on Cay(G, S).

6Logarithms in this text are base two, unless otherwise stated.
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Definition (random walk on H). Define μt to be the distribution of a simple random walk on
Cay(G, S) of length t started at the identity: μ0 is supported on the identity of G,

μ1(g) =
{ 1

|S| g ∈ S ∪ S−1

0 g �∈ S ∪ S−1

and for t > 1,
μt = μ1 ∗ μt−1.

Let f : X → R be the second eigenvector of the normalized adjacency matrix of H, that is,
μ1 ∗ f = λf and iterating for all integers t > 0,

μt ∗ f = λtf.

We shall argue that for t3 ≤ C log |G|, with C > 0 a universal constant,

λ2t3 ‖f‖2
2 = ‖μt3 ∗ f‖2

2 ≤
1

|G|c2/c
‖f‖2

2 , (2)

with c2 > 0 the constant from the endgame lemma. The left equality follows by choice of f and
the right inequality will follow using the three lemmas. This clearly completes the proof:

λ ≤ 2−c2/(2C) < 1.

Combining the three steps. It remains to explain how (2) follows from the three lemmas. The
proof, naturally, consists of three parts as below.

Before describing the three parts, we explain, in high level, how the proof that Cay(G, S) is an
expander goes (for Sch(G, S, X) details follow). Consider the entropy 1/ ‖μt‖

2
2. The reader may

think of μt as being uniform over a set of size 1/ ‖μt‖
2
2. Our goal is to show that in logarithmic

time the entropy is nearly maximal. The proof considers four times: 0 = t0 ≤ t1 ≤ t2 ≤ t3 where
ti = αi log n with some constants 0 = α0 ≤ α1 ≤ α2 ≤ α3. In time t0 the entropy is minimal
1/ ‖μt0‖

2
2 = 1. The opening will imply that the entropy at time t1 is order |G|ε for some constant

ε > 0. The middle-game will imply that at time t2 the entropy is actually |G|1−ε. The endgame,
finally, will imply that at time t3 the entropy is order |G|. Schematically,

1/ ‖μt0‖
2
2 = 1

opening
−−−−−→ 1/ ‖μt1‖

2
2 = |G|ε

middle-game
−−−−−−−−→ 1/ ‖μt2‖

2
2 = |G|1−ε endgame

−−−−−→ 1/ ‖μt3‖
2
2 ∼ |G|.

Opening. Let t1 be the maximal integer so that 2t1 < c1 log |G| with c1 > 0 from the opening
lemma, Lemma 2. Apply the opening lemma to conclude

‖μt1‖
2
2 ≤

1
|G|ε1

, (3)

where ε1 = ε1(c1) > 0 is a constant. Why does this inequality hold? Well, since the girth
of Cay(G, S) is larger than 2t1, a walk of length t1 on Cay(G, S) is along a tree. In other
words, μt1 is the probability distribution of a random walk of length t1 on a |S|-ary tree (if
S is symmetric). The probability distributions of such random walks are well-understood.
Specifically, Kesten [12] proved that

‖μt1‖
2
2 ≤

(
2
|S|

)t1

,

so (3) indeed holds.
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Middle-game. We actually need a statistical version of the middle-game lemma, Lemma 3 (see
Proposition 2 in [3]). To get a statistical version, apply a version of the Balog-Szemeredi-
Gowers theorem (e.g. [21]). We shall not describe the exact statement at this point, but
rather hint at the main idea.

The middle-game lemma says that, under some non-triviality assumptions, the size of A ·A ·A
is much larger than that of A. Think of A as the support of μt1 , and assume that it satisfies
the non-triviality assumptions (this requires a proof). The size of A corresponds to 1/ ‖μt1‖

2
2.

The set A ·A ·A corresponds to μt1 ∗ μt1 ∗ μt1 . The middle-game lemma says that as long as
A is not too large, the set A · A · A is much larger than A. This corresponds to saying that
as long as

1/ ‖μt1‖
2
2 ≤ |G|1−c2/2,

it holds that
1/ ‖μ3t1‖

2
2 = 1/ ‖μt1 ∗ μt1 ∗ μt1‖

2
2 ≥ (1/ ‖μt1‖)

1+ε2 .

Here we chose c2 > 0 as the constant from the endgame lemma, Lemma 4, and so ε2 =
ε2(c2) > 0 is a constant. Repeatedly apply this argument for order 1/(ε1ε2) times. In each
application, entropy increases by a factor of 1+ε2 in the exponent (as long as it is not already
too large). Set t2 to be roughly 31/(ε1ε2)t1. Eventually, the norm must be small,

‖μt2‖
2
2 ≥ |G|1−c2/2. (4)

Endgame. We now explain the proof for Schreier diagrams (this is different than as hinted above).
Apply the endgame lemma with the distribution μt2 and the second eigenvector f . Since all
eigenvectors are orthogonal, and the uniform distribution on X is the first eigenvector, we
know

∑
x f(x) = 0. The endgame lemma together with (4) imply (set t3 = t2)

‖μt3 ∗ f‖2
2 ≤

|G|

|G|c2
1

|G|1−c2/2
‖f‖2

2 =
1

|G|c2/2
‖f‖2

2 ,

and (2) indeed holds.

So far, the three main steps of the proof, and how to combine them into a proof. In the next
sections we discuss each of the three steps in detail.

Remark: It is meant to be the case that each of the three steps/sections that follow can be read
independently of the other two.

3 Opening

This is, seemingly, the simplest step of the three. We just need to show that Cay(G, S) has high
girth, that is, that locally it looks like a tree. Finding a single S satisfying this property is, in many
cases, indeed quite simple. Proving, however, that every S yields (the statistical version of) large
girth is much harder, and in general open.

As can be understood from the previous section, even a weaker condition on S is required: That
the random walk defined by S behaves similarly to a random walk on a tree, at least for logarithmic
time.
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We explain the main idea via the example we follow, the graph Cay(G, S), where G = SL2(F)
with F a finite prime field of size p and

S = {g1, g2, g
−1
1 , g−1

2 }

with

g1 =
(

1 2
0 1

)
and g2 =

(
1 0
2 1

)
.

The following theorem completes the proof of the opening step in this case, since |G| is order p3.

Theorem 5. The girth of Cay(G, S) is at least log3 p.

The reader may verify that standard estimates on the number of zeros of polynomials (like the
Schwartz-Zippel lemma) in fact imply that the girth of Cay(G, S′) is logarithmic for most choices
of S′.

To prove the theorem, translate girth to group terminology. A reduced word w is w = w1w2 · · ·wt

with wi ∈ S and wi+1 �= w−1
i for all i. The integer t is called the length of w. The girth of Cay(G, S)

is at most t iff there is a reduced word w of length at most t so that w = 1 in G.
The girth bound (in the theorem above) is proved in two stages. First, we prove that the two

matrices g1, g2 generate a free group over Z, that is, they do not satisfy any non-trivial relations as
integer matrices. In other words, that over Z, every reduced word w is not equal to the identity of
SL2(Z). Second, we observe that if g1, g2 generate a free group over Z, then reducing them modulo
p can not yield short relations.

Lemma 6. The two matrices g1, g2 generate a free group inside SL2(Z).

The theorem easily follows from the lemma: It follows (by simple induction) that for every
integer j > 0, the absolute values of the entries of every reduced word of length j in g1, g2 in SL2(Z)
is at most 3j . The lemma says that in SL2(Z) these two elements generate a free group. So, for
every t < log3 p, the reduction modulo p of every reduced word of length t in g1, g2 is not identity.
The theorem thus holds.

How do one prove that g1, g2 generate a free group? One way is a standard geometric argument:
the ping-pong lemma (attributed to F. Klein). The general idea is to construct some space X on
which g1, g2 act. Any non-trivial reduced word w thus defines a map w(·) from X to X. The
construction should be such that for every non-trivial w, there is a point x in X so that w(x) �= x.
Specifically, w �= 1.

There are many variants of this lemma, but here is a simple one that suffices in our case.

Lemma 7. Let g1, g2 act on a set X. Assume that there are nonempty disjoint subsets X1, X2

of X so that gz
1(X2) ⊆ X1 and gz

2(X1) ⊆ X2 for every nonzero integer z. Also assume7 that for
every nonzero integer z, there exists x0 = x0(z) in X not in X1 ∪ X2 so that gz

1(x0) ∈ X1 and
gz
2(x0) ∈ X2. Then, g1, g2 generate a free group.

As the name hints, the two elements g1, g2 play ping pong between the sets X1, X2 and the ball
is x0.

7This assumption is not necessary, but suffices for us and makes the proof easier.

���������	�
��  � ������������������������������



Explanation by example. This specific instantiation of the ping pong lemma follows by showing
that for every non-trivial reduced word w, we can choose x0 �∈ X1 ∪ X2, so that w(x0) ∈ X1 ∪ X2,
and specifically w(x0) �= x0.

Instead of a formal proof, we give an example that can be easily made into a proof. Consider
the word w = g1g2g

−2
1 . Choose x0 = x0(−2), where −2 is the power of the right-most element of

w. By assumption, g−2
1 (x0) ∈ X1. Thus, g2(g−2

1 (x0)) ∈ X2 and w(x0) = g1(g2(g−2
1 (x0))) ∈ X1.

Using the ping pong lemma, we prove that g1, g2 indeed generate a free group.

Proof of Lemma 6. The set X we use is Z2 on which G = SL2(Z) acts by linear transformations.
We partition X to

X1 = {(a, b) : |a| > |b|} and X2 = {(a, b) : |a| < |b|}.

The sets X1, X2 are disjoint and nonempty.
For every nonzero integer z, and x2 = (a, b) in X2, we have gz

1(x2) = (a+2zb, b). Since |a| < |b|,
it holds that |a + 2zb| > |b|, and so gz

1(x2) is in X1. So, gz
1(X2) ⊆ X1. Similarly, gz

2(X1) ⊆ X2.
It remains to find x0 = x0(z) for every given nonzero z. Set x0 = (|z|, z). We have gz

1(x0) =
(|z| + 2z2, z) is in X1 and gz

2(x0) = (|z|, 2z|z| + z) is in X2.

4 Middle-game

The middle-game is the most elaborate one. There are much more general versions of the middle
game due to Pyber and Szabo [16] and Breuillard, Green and Tao [5]. We focus on the (historically
first) approach presented in Bourgain and Gamburd’s works [2, 3] that follows Helfgott’s work [10].
We explain how to establish the middle-game for the group from our main example G = SL2(F), F

a prime field.
Recall that in the middle game we wish to prove product-growth8: for A ⊂ G with certain

properties, the size of A · A · A is much larger than that of A. The two properties we require of A
is that (i) A generates G and (ii) A is not too large.

The prove consists of six different parts summarized by the following six lemmas. We provide
a short intuition for each lemma, but do not provide full proofs. Below we show how the lemmas
are combined to a full proof.

Three times suffice. The classical Plunecke-Ruzsa inequality says that if A is a subset of an
abelian group G so that |A ·A| ≤ C|A|, then Ak = {a1a2 · · · ak : ai ∈ A} has size |Ak| ≤ Ck|A|
for every integer k. This statement has been generalized greatly [21], where the reader is
referred to for more details.

The following lemma is a special case of the general principle. It is a noncommutative analog
of the Plunecke-Ruzsa inequality, that roughly states that if A3 is not much larger than A,
then the same is true for every Ak.

Lemma 8. There exists a constant C > 0 so that the following holds. Let A ⊆ G = SL2(F)
be so that |A3| ≤ D|A| for some D > 0. Then, |Ak| ≤ DCk|A| for every integer k.

8In fact, we wish to prove a statistical version of growth. To move to the statistical language, use the Balog-
Szemeredi-Gowers theorem, e.g., as in the work of Tao [21]. We shall not discuss this part of the proof here.
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The proof of the lemma uses the notion of approximate groups. It gives a structural charac-
terization of sets A that do not grow under products, such sets are approximate groups. The
lemma then easily follows since approximate groups, by definition, do not grow much under
products.

Sum-product. This part uses the sum-product theorem to show growth. The sum-product the-
orem (roughly) states that for every A ⊂ F, one of the sets A + A or A · A is larger than
A. This was used by Helfgott [10] to prove growth in SL2(F). The intuition is that when
multiplying matrices both sums and products in the underlying field are performed. To move
from working with matrices to working with the underlying field, use matrix trace: The trace

of g =
(

a b
c d

)
is Trg = a + d.

Lemma 9. There exists a constant c > 0 so that for every δ > 0, there exists ε > 0 so that the
following holds. Let V ⊂ SL2(F) be a set of commuting matrices of size |V | ≤ |F|1−δ. Assume
that g ∈ SL2(F) is so that, with respect to the basis that makes V diagonal9, g1,1g1,2g2,1g2,2 �= 0.
Then,

|TrV8gV8g
−1| ≥ c|V |1+ε.

The lemma follows by reduction to the sum-product theorem, using Rusza distances. Here is

a very rough outline. Diagonal matrices in SL2(F) have the form v =
(

x 0
0 1/x

)
. For two

diagonal matrices v1, v2, the matrix v1gv2g
−1 “contains” a map of the form x �→ x+1/x. The

proof boils down to analyzing the growth that this map induces.

Finding commutative set. In light of the previous lemma, we need to find a commutative set
of matrices. This part uses matrix-trace to find a “large” commuting set of matrices.

Lemma 10. For every A ⊆ SL2(F) so that10 A = A−1, there exists a set V ⊆ A2 of commuting
matrices so that

|V | ≥ |TrA|
|A|

|A3|
.

The proof of the lemma uses that trace gives knowledge of eigenvalues. To prove the lemma,
choose the least common trace in A3 and use its pre-image under trace to find V .

Trace-set is large. To obtain a useful bound on the size of V from the previous lemma, we require
that TrA is large.

Lemma 11. There exist constants c, k > 0 so that the following holds. For every A ⊆ SL2(F)
so that 〈A〉 = SL2(F),

|TrAk| ≥ c|A|1/3.

This part uses that trace is a “linear projection” of matrices to show that the trace of a set
is large. The group SL2(F) is a three-dimensional object, so a set of size s in it, should have
a linear projection of size at least s1/3, as the lemma says.

9A set of commuting matrices can be simultaneously diagonalized.
10That A is symmetric is not essential but makes the formulation simpler.
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Algebraic growth. The previous lemmas mostly dealt with V , a commuting set of matrices,
which is, therefore, of size at most |F|. This is too small in comparison to the size of A, which
can be of order, say, |F|2. This part uses simple properties of polynomials to move back to
the “correct” order of magnitude.

Lemma 12. There exists a constant c > 0 so that the following holds. Let V ⊂ SL2(F) be a
set of commuting matrices of size |V | ≥ 30. Assume that g ∈ SL2(F) is so that, with respect
to the basis that makes V diagonal, g1,1g1,2g2,1g2,2 �= 0. Then,

|V gV g−1V | ≥ c|V |3.

The lemma (roughly) follows by showing that the map

(x, y, z) �→
(

x 0
0 1/x

)
g

(
y 0
0 1/y

)
g−1

(
z 0
0 1/z

)

is finite, that is, the pre-image of (most) image-points is of finite size.

Generation yields useful elements. Two of the lemmas above use a “useful” element g, i.e., so
that after a basis change g1,1g1,2g2,1g2,2 �= 0. We need to find a useful element inside A or
some iterated product of it.

Lemma 13. There exists an integer k so that the following holds. Let A ⊆ SL2(F), |F| > 3,
be so that 〈A〉 = SL2(F). Then, with respect to any basis change in11 SL2(F̄), there is g ∈ Ak

so that g1,1g1,2g2,1g2,2 �= 0.

The existence of a useful g follows since A generates the whole group. For example, the set
of upper triangular matrices (which do not satisfy g1,1g1,2g2,1g2,2 �= 0) is a subgroup, but by
assumption A contains an element outside of it.

The lemmas above are combined in a simple but clever way to prove product growth, Lemma 3.
To simplify notation, in the following c, k are universal constants that may change their value from
time to time, δ > 0 is a fixed constant, and ε = ε(δ) > 0 may change its value as well.

Assume, for simplicity, that A is symmetric, A−1 = A. In light of Lemma 8 it suffices to prove
that |Ak0 | ≥ c|A|1+ε0 for some constants k0, ε0. This is what we shall do. Assume towards a
contradiction that

|Ak0 | < c|A|1+ε0 . (5)

First, use Lemma 10 with the set Ak, where k is the constant from Lemma 11. We thus found a
commutative set of matrices V ⊂ A2k so that

|V | ≥ |TrAk|
|Ak|

|A3k|
.

Lemma 11 and assumption (5) imply

|V | ≥ c|A|1/3 1
|A|ε0/2

≥ c|A|1/3−ε0/2.

11F̄ is the algebraic closure of F. Algebraic closure is necessary to diagonalize all matrices.
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Second, use Lemma 10 with the set U = V8gV8g
−1V8, where g is the useful element given by

Lemma 13 w.r.t. the basis that makes V8 diagonal. We found a commutative set of matrices
W ⊂ U2 so that

|W | ≥ |TrU |
|U |

|U3|
.

By Lemma 9 and choice of g, we know |TrU | ≥ c|V |1+ε1 , where ε1 > 0 is a constant. Using
Lemma 12 and assumption (5), since U3 ⊂ Ak,

|W | ≥ |TrU |
|U |

|U3|
≥ c|V |1+ε1

|V |3

|Ak|
≥ c|A|1/3+ε.

Finally, let g be a useful element w.r.t. the basis that makes W diagonal as given by Lemma 12,

|Ak0 | ≥ |WgWg−1W | ≥ c|W |3 ≥ c|A|1+ε0 .

This contradicts (5).

5 Endgame

The endgame is about obtaining a non-trivial estimate on the behavior of convolution. There are
two different approaches for establishing this. One is using representation theory: Sarnak and
Xue’s multiplicity argument [19] or Gower’s notion of quasi-random group [9]. The other is using
two-transitivity as in [4]. We shall explain both approaches. The first approach we consider is using
two-transitivity, since the notions it uses are simpler.

5.1 Two-transitivity

We now explain how do two-transitive actions imply the endgame. This approach is useful for a
special type of Schreier diagrams: when G’s action on X is two-transitive (or pairwise independent).
This approach towards establishing the endgame was used in [4] where a monotone expander was
constructed. It is especially relevant to cases when G is not compact, since then the quasi-random
groups approach that is based on representation theory does not work.

Lemma 14. Let G be a finite group that acts two-transitively on a finite set X. Let μ be a
probability distribution on G. Let f : X → R be so that

∑
x∈X f(x) = 0. Then,

‖μ ∗ f‖2
2 ≤

|G|

(|X| − 1)1/2
‖μ‖2

2 ‖f‖
2
2 .

The lemma implies the mixing property, Lemma 4, as long as |X| is polynomially comparable
to |G|. For the example we follow, the Schreier graph defined by the Möbius action, the lemma
completes the endgame, since the action is indeed two-transitive and |X| is order |G|1/3.

The proof of the lemma is just a few lines of calculation that can be summarized as: first apply
Cauchy-Schwartz to remove μ, and then use two-transitivity in a straightforward way to obtain
non-trivial cancellations. Where does the “|G|/|X| factor” come from? Well, in a nutshell, from
the following equality: for every f : X → R and for every x in X, it holds that

∑
g∈G f(g(x))2 =

(|G|/|X|) ‖f‖2
2.
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Proof. First, use Cauchy-Schwartz inequality to remove the dependence on μ,

‖μ ∗ f‖2
2 =

∑
g,g′

μ(g)μ(g′)
∑

x

f(g−1(x))f(g′−1(x))

≤ ‖μ‖2
2

⎛
⎝∑

g,g′

∑
x,x′

f(g−1(x))f(g−1(x′))f(g′−1(x))f(g′−1(x′))

⎞
⎠

1/2

= ‖μ‖2
2

⎛
⎝∑

x,x′

(∑
g

f(g−1(x))f(g−1(x′))

)2
⎞
⎠

1/2

= . . .

Now, for fixed x �= x′, since
∑

x f(x) = 0 and since the action is two-transitive,∑
g

f(g−1(x))f(g−1(x′)) =
∑
x′′

f(x′′)
∑

g:g−1(x)=x′′

f(g−1(x′))

=
∑
x′′

f(x′′)
∑

x′′′ �=x′′

|G|

|X|(|X| − 1)
f(x′′′)

= −‖f‖2
2

|G|

|X|(|X| − 1)
.

So, we can continue

. . . = ‖μ‖2
2 ‖f‖

2
2

(
|X|

|G|2

|X|2
+ |X|(|X| − 1)

|G|2

|X|2(|X| − 1)2

)1/2

= ‖μ‖2
2 ‖f‖

2
2 |G|/(|X| − 1)1/2.

5.2 Multiplicity and quasirandomness

The second approach towards establishing a mixing property is via representation theory: Recall
that we just wish to establish a bound on the eigenvalues of a given matrix M (that is defined by
the graph in question). It would have been extremely simple to do so, if the matrix was diagonal.
This is, of course, too good to be true. Since M is defined by a group action, we can almost
diagonalize it using representation theory, as we now explain.

We start with a brief introduction of basic concepts (for more details, see Serre’s book [20]).
Let G be a finite group. We can look for “copies” of G inside matrix groups, specifically, inside the
group of m×m invertible complex matrices GLm(C). A representation12 is a map ρ : G → GLm(C)
that respects the group operation, that is, for every g, g′ in G, it holds that ρ(g)ρ(g′) = ρ(gg′), as
matrices. The integer m is called the dimension of ρ.

Two standard examples: The trivial representation maps every g in G to the identity matrix.
The regular representation captures the action of G on itself; it is a map ρ from G to GL|G|(C)

12We shall only consider representations over C. For concreteness, we only consider matrix-representations (instead
of the linear transformations they define).
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defined by: for every g in G, the matrix ρ(g) is

(ρ(g))g1,g2 =
{

1 gg1 = g2,
0 gg1 �= g2.

Similarly to that integers have building blocks that are called prime numbers, representations
have building blocks that are called irreducible representations. A representation ρ is irreducible
if every G-invariant subspace of Cm is trivial, that is, if U is a subspace of Cm so that g(U) ⊂ U
for every g in G, then U is either GLm(C) or {0}. If, e.g., ρ is irreducible and trivial, then it is
one-dimensional and ρ(g) = 1 for all g.

There is obviously an infinite number of irreducible representation since there are infinitely
many choices of basis. We shall thus say that two representations ρ, ρ′ are isomorphic if there is a
matrix s (a basis change) so that ρ′ = sρs−1.

Theorem 15. There is a finite list ρ1, . . . , ρt of (non-isomorphic) irreducible representation so that
every representation ρ of G can be written as a direct sum of copies of ρ1, . . . , ρt.

The theorem says, in other words, that for every representation ρ of G, w.r.t. some choice of
basis, ρ is in block-diagonal form with blocks from the list ρ1, . . . , ρt.

Representations allow to state a sufficient condition under which the mixing property holds.
This condition was considered in several works, and Gowers calls it quasi-randomness [9]. A group
G is D-quasi-random if every non-trivial irreducible representation of G has dimension at least D.
The following theorem proved by Babai, Nikolov and Pyber [1] summarizes the statement.

Theorem 16. Assume G is a D-quasi-random group that acts transitively on X. Let μ : G → R

and f : X → R be so that
∑

x∈X f(x) = 0. Then,

‖μ ∗ f‖2
2 ≤

|G|

D
‖μ‖2

2 ‖f‖
2
2 .

The theorem shows that a mixing property holds for any group G that is D-quasi-random with
D that is polynomially comparable to |G|. To prove the theorem13 we shall use properties of the
regular representation (see e.g. [20]) as was done in [19].

Proof of Theorem 16. We start the proof by stating some known properties of the regular repre-
sentation. Let ρ1, . . . , ρt be the list of all (non-isomorphic) irreducible representations of G, where
ρ1 is the trivial representation. Let ρ be the regular representation of G. Theorem 15 implies that
ρ can be written as a direct sum of ρ1, . . . , ρt. Denote by ci the number of copies of ρi in ρ. Denote
by di the dimension of ρi.

Theorem 17 (structure of regular representation). ci = di for every i ∈ [t].

We use these properties of the regular representation to bound the relevant singular values.
First, some definitions. For an k × k complex matrix M , denote by M∗ the conjugate transpose
of M . The matrix MM∗ is positive semi-definite, and has k non-negative eigenvalues σ1 ≥ σ2 ≥
. . . ≥ σk ≥ 0. Denote

σ(M) = σ1.

13A different way to prove the theorem is using Schur’s orthogonality (see [20]).
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Denote
Mi =

∑
g∈G

μ(g)ρi(g)

for 1 ≤ i ≤ t. By Theorem 17, after a basis change, the matrix

R =
∑
g∈G

μ(g)ρ(g)

is in block-diagonal form with blocks from the list M1, . . . , Mt, each Mi has multiplicity ci. Denote
by Q the |G| − 1 × |G| − 1 matrix with blocks of the form M2, . . . , Mt, after deleting from R a
row and a column that correspond to the trivial representation (c1 = d1 = 1). On one hand,
quasirandomness implies

trace(QQ∗) =
∑

2≤i≤t

citrace(MiM
∗
i ) ≥ D · σ(Q).

On the other hand,

trace(QQ∗) ≤ trace(RR∗) =
∑
g1∈G

∑
g2∈G

μ(g2g
−1
1 )2 = |G| ‖μ‖2

2 .

We conclude that
max{σ(Mi) : 2 ≤ i ≤ t} = σ(Q) ≤ ‖μ‖2

2 |G|/D.

Finally, we use the bound on singular values to prove the theorem. Consider the representation
ρ′ of G induced by the action of G on X: for every g in G, the |X| × |X| matrix ρ′(g) is defined
by the linear map (ρ′(g)h)(x) = h(g−1x) for h : X → C. By Theorem 15, after a basis change, the
matrix R′ =

∑
g∈G μ(g)ρ′(g) can be written in block-diagonal form with blocks that are copies of

M1, . . . , Mt, each of the blocks appears in R′ with multiplicity c′i.
We claim that c′1 = 1, since G acts (one-) transitively on X. There is a formula (that follows

from Schur’s orthogonality relations, see [20]) for calculating c′i, and specifically

c′1 =
1
|G|

∑
g∈G

trace(ρ′(g)) =
1
|G|

∑
g∈G

∑
x∈X

ρ′(g)x,x =
1
|G|

∑
x∈X

∣∣{g ∈ G : g(x) = x}
∣∣ = 1.

The last equality holds due to transitivity, which implies that
∣∣{g ∈ G : g(x) = x}

∣∣ =
∣∣{g ∈ G :

g(x) = x′}
∣∣ for every x, x′ in X.

Since
〈
f, 1

〉
=
∑

x f(x) = 0 and since the all-ones vector spans the subspace corresponding to
the trivial representation,

‖μ ∗ f‖2
2 =

〈
R′f, R′f

〉
≤ σ(Q) ‖f‖2

2 .
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