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LIMITATIONS ON EXPLICIT CONSTRUCTIONS OF
EXPANDING GRAPHS*

MARIA KLAWEt

Abstract. Expanding graphs are the basic building blocks in constructions of many types of graphs
with special connectivity properties which arise in a variety of applications including switching networks,
sorting networks and establishing time-space trade-offs for numerous computational problems. Only one
explicit method of constructing arbitrarily large expanding graphs with a linear number of edges is known
(Margulis [13], Gabber and Galil [8]), but the number of edges used is much greater than the number
known to be sufficient via probabilistic arguments. In this paper we show that various other constructions
which have been proposed to obtain expanding graphs, including one-dimensional analogues of the
Gabber-Galil construction and some pseudorandom constructions, cannot ever yield expanding graphs.
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1. Introduction. For any bipartite graph, whose two vertex sets are called inputs
and outputs, if X is a subset of inputs we will use FX to denote the neighborhood
of X, i.e. the set of outputs which are adjacent to some input in X. Moreover, we will
denote the cardinality of any set A by IAI. For the purposes of this paper, we will
call a bipartite graph with n inputs and n outputs an expanding graph, if there exist
positive constants a and 8, such that for any subset X of inputs with IXI =<an we
have IFX] -> (1 + g)IX I. (There are many slight variations in the definitions of expanding
graphs in the applications we will mention, but the basic idea is always that every set
in some class of subsets of inputs is guaranteed to expand by some fixed amount.)

It is obvious that expanding graphs exist since the complete bipartite graph is an
expanding graph for any a and 5 with (1 +)a =< 1. What is more surprising is that
there are families of expanding graphs with only a linear number of edges. In fact,
for any a and 8 such that (1 + 8)a < 1, there is some constant k such that for every
n there is a bipartite graph with n inputs, n outputs and at most kn edges, which is
an expanding graph with respect to a and 8. Pinsker [19] gave a fairly simple
probabilistic proof of this for a particular a, 8 and k in 1973; similar arguments have
been used in subsequent papers to prove this fact for other combinations of a and 8,
and it not hard to see that these probabilistic arguments succeed in general.

Over the past ten years expanding graphs with a linear number of edges have
been used as building blocks in constructions of graphs appearing in a broad spectrum
of applications. As motivation for the importance of obtaining good explicit construc-
tions, and consequently for the significance of the results in this paper, we give a brief
survey of these applications.

The study of the complexity of graphs with special connectivity properties origi-
nated in switching theory, motivated by problems of designing networks able to connect
many disjoint sets of users, while only using a small number of switches. An example
of this type of graph is a superconcentrator, which is an acyclic directed graph with
n inputs and n outputs such that given any pair of subsets A and B of the same size,
of inputs and outputs respectively, there exists a set of disjoint paths joining the inputs
in A to the outputs in B. Some other examples are concentrators, nonblocking
connectors and generalized connectors (see [6], [21] for more details). There is a large
body of work searching for optimal constructions of these graphs (Pinsker [19],
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LIMITATIONS ON CONSTRUCTIONS OF EXPANDING GRAPHS 157

Bassalygo and Pinsker [3], Cantor [5], Ofman [15], Masson and Jordan [14], Pippenger
[20], [21], Chung [6]). So far all optimal explicit constructions depend on expanding
graphs of some sort.

Superconcentrators have also proved to be useful in theoretical computer science.
By showing that the computation graphs of straight line programs for problems such
as polynomial multiplication, the Fourier transform and matrix inversion must be
superconcentrators, it has been possible to establish nonlinear lower time bounds and
time-space trade-offs for these problems assuming certain models of computation
(Valiant [25], Abelson [1], Ja’Ja’ [9], Tompa [24]).

These space-time trade-otis are obtained via a game known as pebbling which
is played on acyclic directed graphs and mimics the storage of temporary results
during a straight-line computation. In considering the problem of pebbling an arbitrary
acyclic directed graph, expanding graphs have been used in several instances to

corstruct graphs which are (in some sense) hardest to pebble, hence establishing lower
bounds in space-time trade-otis (Lengauer and Tarjan [12], Paul and Tarjan [17],
Paul, Tarjan and Celoni [18], Pippenger [22]).

Expanding graphs have also been used to construct sparse graphs with dense long
paths (Erdos, Graham and Szemeredi [7]). Interest in sparse graphs with dense long
paths stems from studying the complexity of Boolean functions, and more recently
from problems of designing fault-tolerant microelectronic chips. Paul and Reischuk
strengthened this result by constructing (still using expanding graphs) sparse graphs
of bounded in-degree with dense long paths, which is of interest since computation
graphs have bounded in-degree.

Perhaps the most practical applications of expanding graphs occur in the two
most recent results. Ajtai, Komlos and Szemeredi [2] have announced the construction
of an oblivious sorting network using O(n log n) comparators, and having depth
O(log n). Again, expanding graphs form the basic components, and of course, the
explicit construction of the sorting network depends on the explicit construction of
expanding graphs. The problem of constructing such a sorting network has been open
for twenty years [4], which perhaps illustrates best the unexpected power of expanding
graphs. Finally, expanding graphs have been used by Karp and Pippenger [10] to
design an algorithm which can be applied to virtually all the well-known Monte-Carlo
algorithms to reduce the number of uses of a randomization resource (i.e. coin-flips
or calls to a random number generator) while still maintaining polynomial running time.

In several of the applications mentioned above the usefulness of expanding graphs
depends on the existence of an explicit construction of expanding graphs with a linear
number of edges. In 1973 Margulis [13] gave an explicit construction, but, although
he was able to prove that the constant was greater than zero, he was not able to
bound strictly away from zero. In 1979, after slightly modifying Margulis’s construc-
tion, Gabber and Galil [8] were able to obtain a positive lower bound for 8, and thus
obtained the first usable explicit construction, which we now present for future
reference. Let Z,, denote the integers mod m, and let fi for 0, 1,..., 6 be the
functions on Z, Z, defined by

fo(s, t) (s, t),

fl (s, t) (s, 2s + t) mod m,

f(s, t) (s, 2s + + 1) mod m,

f3(s, t) (s, 2s + + 2) mod m,
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158 MARIA KLAWE

f4(s, t)= (s + 2t, t) mod m,

f5(s, t)= (s + 2t + 1, t) mod m,

f6(s, t) (s + 2t + 2, t) mod m.

The graph G(m) is defined as the bipartite graph with inputs {x(s,t): l<=s, t<=m}
and outputs {y(s,t): l_<-s, t<=m} such that x(s,t) is adjacent to y(f(g,t)) for
i=0, 1,...,6.

There are two aspects of this construction which make it less than completely
satisfactory. The first, and most important, is that the combination of a and 8 for
which Gabber and Galil are able to prove that G(m) expands is significantly worse
than those combinations which can be proved to exist by probabilistic methods. As
a result, for example, the best construction of superconcentrators using their expanding
graphs has 261.5n edges, which compares unfavorably with the fact that it is known
(via probabilistic methods) that superconcentrators exist with (38.5n + O(log n)) edges
(Chung [6]). The second is that the proof that their construction succeeds is fairly
sophisticated mathematically. One might hope for a more elementary and intuitively
satisfying proof. Consequently the search has continued for explicit constructions of
expanding graphs with a linear number of edges.

The most obvious approach is to look for some variant of the Gabber-Galil
construction which would either yield a better combination of a, 8 and k, or at least
yield a simpler proof of expansion. Another possibility which has occurred to many
people, is that since it can be shown that for any a and 8 there exists k such that
almost all random bipartite graphs with kn edges expand with respect to ct and d;,
one could use pseudorandom number generators to construct a bipartite graph with
kn edges. Then, presumably with high probability, this graph should be an expanding
graph with respect to a and 8. We will refer to this type of construction as a
pseudorandom construction. Yet another direction has been proposed by Tanner
[23]. He observed that if h and h 2 are the two largest eigenvalues of MM, where
M is the incidence matrix of a regular bipartite graph G, then G is an expanding
graph with respect to a and (h 1/(ah 1+(1--O)h2))--1. Thus it suffices to construct
regular bipartite graphs with a linear number of edges such that the two largest
eigenvalues of MM7" are widely separated. Tanner also showed that a class of graphs
known as generalized n-gons have this property, but unfortunately generalized n-gons
only exist for finitely many n.

The results in this paper show that at least the most obvious examples of the first
two above approaches cannot succeed. We will define a class of constructions which
both is a natural variant of the Gabber-Galil construction, and includes all the graphs
which can be obtained by pseudorandom constructions when linear congruential
pseudorandom number generators are used in the following fashion. Given a finite
set {f} of pseudorandom number generators, the edges of the pseudorandom graph
are all pairs of the form (x, f(x)) where 1 <_-x _<-n.

Notice that each f in the Gabber-Galil construction is the restriction mod m of
a two-dimensional linear function, all of whose coefficients are either 0, 1 or 2. In an
analogous manner, for any finite set F {ax + b: 1 _-< _-< k } of one-dimensional linear
mappings, we can define a bipartite graph G(n,F) with inputs {x(i): l_-<i_-<n} and
outputs {y (i): 1 =< =< n } such that x (i) is adjacent to y (/’) if and only if/" [f(i)J rood n
for some f in F. By choosing the coefficients a to be integers, it is easy to see that
this class includes all graphs which could be obtained by pseudorandom constructions
using linear congruential pseudorandom number generators. Suppose 0 < a < 1 and
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LIMITATIONS ON CONSTRUCTIONS OF EXPANDING GRAPHS 159

let F be a finite family of one-dimensional linear functions with rational coefficients.
The main result of this paper is the following.

THZORZM. There exist ]’unctions N(a, IFI) and (a, F, n) such that the limit
3 (a, F, n) as n goes to infinity is O, and such that for each n >- N(a, IFI) there is a subset
X of the inputs of G (n, F) with an/2 < IX] <- an and Irxl < + F, n))lxl.

Since lim,_. 6 (a, F, n) 0, there is no > 0 such that G (n, F) is an expanding
graph with respect to a and for all n. Moreover, if the coefficients of the functions
in F are integers, we can prove a stronger result. Namely that 6 (a, F, n) depends only
on , [El and n. This strengthening is particularly important when applying the result
to pseudorandom constructions using linear congruential number generators since it
means that even if the multipliers are chosen as a function of n, expanding graphs
cannot be obtained.

The theorem above is proved by explicitly constructing a nonexpanding subset
X, and establishing a number of its properties. In an earlier version of this paper [11],
we proved similar results using an entirely different construction of nonexpanding
subsets. There are two ways in which this paper’s construction improves upon the
previous one. First of all, the old construction did not yield the stronger result for
integer coefficients. The second improvement is that in the new construction the size
of the nonexpanding subset can be specified fairly precisely, whereas previously the
size of the nonexpanding subset was O(n 2/3) and thus could not be applied to situations
where one is only interested, for example, in the expansion of sets of approximately
half the inputs. We should, however, point out one aspect in which the old construction
may dominate the new one. LetF be the family {(pi/qi)x + bi: 1 <= <= k}. The 6 function
in the old construction is ( l_<-_-<k log pi + log q,)(l__<,__<k Ip /q l / Ib l)/ og n, whereas the
6 function in the new construction (for rationals) is Ya______< ((3 +q)/s +(q(p2i + 1))/r)
where

s=[(logan/loglogan)/3+2J and r=

It is not hard to see that for some sets F and choices of a and n the value of the old
6 function is much smaller than the value of the new 6 function, and hence in those
cases the old construction would give a stronger nonexpansion result. The new 6
function for integers is 3k/s, and again in some cases the old 6 function is less than this.

There are two major questions about one-dimensional linear constructions which
remain unsettled. The first is whether it is possible to obtain expanding graphs using
real coefficients, and the second is whether it is possible to extend the stronger integer
result to rational coefficients. Of course a positive answer to the second would also
imply a negative answer to the first, since for any fixed n and finite set F of
one-dimensional linear mappings with real coefficients there is a set F’ with rational
coefficients such that G(n,F)=G(n,F’). However, as n increases so must the
numerators and denominators in the rational coefficients in F’, and so the kind of
result for rational coefficients given in this paper has no implication for real coefficients.

The next section describes the construction of the nonexpanding subset X and
establishes sufficiently many of its properties to prove the result for integer coefficients.
In 3, we continue to explore the properties of X, finally achieving the result for
rational coefficients. We are also able to apply this construction to shuffle-exchange
graphs, thus proving that shuffle-exchange graphs cannot be expanding graphs either.

2. Integer eoettieients. Given integers a and b for 1 <-i-<_ k for each let us
define a mapping fi on Z, by f(x)=aix +b modn. For sets A and B we use A\B to
denote the difference set of elements which are in A but not B. This section is devoted
to proving the following theorem.
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160 MARIA KLAWE

THEOREM 2.1. For each real number a between 0 and 1 them is a constant N
depending only on a and k, such that for each n >-N, there exists a subset X ofZ, with
an/2 <- IX[ <-an, and Ifi(X)\X] < 3[XI/ [(log cn/log log cn l/(3k+E)J for 1 <-- <- k.

We begin by introducing some notation and conventions that we will use. For
any numbers x and p in Z,, unless otherwise noted we will understand px and x +p
to mean px mod n and (x +p)mod n respectively. The greatest common divisor of p
and x is denoted by (p, x), and if X is a subset of
defined by p-aX -{z’pz X}. For subsets X and Y we will use XY to denote the
product subset, i.e. XY {z" z xy for some x in X and y in Y}. Similarly Hl__<ii Xi

)/(3+2],denotes the product setXX. X.. Finally, let s denote [(log an/log log an
let - denote [(s/a)(+l*], let u=max {4k +4, (1/a)3+}, and let N=2/a. For
the remainder of this section we will assume that n and are integers satisfying n ->N
and r-< <= n. The next lemma states the inequalities involving these numbers which
we will require in the remainder of this section.

LZMMA 2.2.
(i) s/a >- s >-_ 2.

3k+2(ii) a log log an >- 1.
(iii) " -> (2s(s- 1)(s/a))/(s-2) for s >=3.
(iv) r >=2St’(S/a)sk2 (t’+a).
(v) s(s/)%(+ <=(s/)(++-.
(vi) (s/a)(+2)s+2 <_-an.

Proof. (i) and (ii) are consequences of our assumption that n >_-N, k >- 1 and a < 1.
(iii), (iv) and (v) can be established in a straightforward manner by applying (i) and
the inequalities k --> 1 and k + 1 =< s in a variety of circumstances. Finally (vi) follows
from (ii) and the identity an (log on) (lgan/lglgan).

We are now ready to describe the basic ideas in our construction. We will construct
a set X with the following properties:

Property 2.3.1. an _-< IX] _-< an.
Property 2.3.2. For each i, [(X + bi)\X[ < [Xl/s.
Property 2.3.3. For each/such that (a, n)<-_ s/a, [aX\XI < 2lXl/s.
For any subsetX of Z, and a Z, we have [aX\XI <-laXI <-]aZ, n/(a, n). Thus

Property 2.3.1 also implies the following additional property:
Property 2.3.4. If (ag, n) > s/a then [aX\X[ < 2[XI/s.
Finally [(aiX + bi)\XI <- [((aX X) + b)\X[ + ](aX\X) + bgl <- I(X + bi)\X] +

[aX\X[, and hence the above properties imply the following property, as desired"
Property 2.3.5. For each i, [f(X)\X[ < 3IX[Is.
Let P {a’ (a, n) <-s/a}, and let Q be the subset VIpp {1, p,. ., p-}. For each

p in P and 0-< -< s 1, let Q(p, i) be the subset pi I-Iqp\t,) {1, q, , q-X}. Thus Q
is the set of elements of Z, which can be written as a product of powers of elements
of P in which the exponent of any element is at most s- 1, and Q(p, i) is the subset
of elements of (2 which can be so expressed with the exponent of p equal to i.

Next for each with -_-< t_-<n we define another subset A(t) of Z, by A(t)=
{zOn a(z)z" a maps QB {0, 1,. ., t- 1}}, where B {1, b,. ., bk}. Now, finally,
we define X(t) as X(t)= tAoq-aA(t). We will show that X(t) has Properties 2.3.2
and 2.3.3 for in the range " =< =< n. Moreover we will show that for some in this
range X(t) also satisfies Property 2.3.1.

Before continuing with the proof we will attempt to provide some intuition as to
why X(t) has these properties. First of all, in order for any set X to have Property
2.3.2, it is clear that for each b it must be true that most of the elements of X can
be arranged into long sequences of the form x, x + b, x + 2b, , or in other words,
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LIMITATIONS ON CONSTRUCTIONS OF EXPANDING GRAPHS 161

into long arithmetic progressions with period bi. The set A(t) is constructed so that
for each q in Q, the set q-lA (t) (and hence also X(t)) can be arranged into arithmetic
progressions with period bi and of length at least t. This and its consequences are
more formally presented in Lemmas 2.6 and 2.7.

Next let us consider why X(t) should satisfy Property 2.3.3. The set Q is
constructed so that [Q(p, 0)[ is small relative to IQ[ for each p in P. Moreover for any
set A and i>0, if x is in t.Jqo(p,iq-lA then px is in tAqo(p,i_lq-lA. Thus if

Iq-lal=lA[ for each q in Q, one could hope that (IpX\Xl/lxl)(lO(p, o)[/[QI). In
general [q- al may be much smaller than (q A could be empty, for example),
but one kind of set A which has lq-’al-lAI for every q is a long interval, i.e.
{x, x + 1, x + 2,..., x +/’} for sufficiently large/’. This is expressed more precisely in
Lemma 2.8. Examining the definition of A(t) shows that A(t) has been constructed
so that it is the union of intervals of length at least and so has the desired property.
Since the sets q-lA(t) are not disjoint in general, the proof that }pX\XI is small is
still quite complicated, and depends heavily on the fact that each set q-lA(t) is also
the union of long intervals.

Finally we consider Property 2.3.1. It is obvious that [g(t)l increases with t, and
that for large enough (t n for example) X(t) is all of Zn. What is harder to prove
is that Ix(t)l increases slowly enough in the appropriate range so that there is some
with an/2<-_[X(t)l<-an, and it is precisely for this reason that is chosen to be so

much larger than s.
We begin the proof by establishing some upper bounds on the size of our sets in

terms of s, and k.
LEMMA 2.4.

(i) IOl_-<s .
(ii) IA(t)l<=t(k+l)sk
(iii) For each q in (2, [q-A(t)l<=(s/a)lA(t)l.
(iv) [X(t)l <-sk(s/a)st
Proof. Il is obvious since IPI -< g, and (ii) follows directly from (i)since clearly

IA (t)l-< Il For the proof of (iii) note that for any subset Y of Z, and any q in Z,
we have [q-1YI -< (q, n)lYI. Moreover, it is easy to see that for any q in (2 we have
(q, n)<- (s/a), which completes the proof of (iii). Finally (iv) follows in an obvious
way from (i), (ii) and (iii).

COROLLARY 2.5. Ix( )l <--an.
Proof. This follows immediately from inequalities (v) and (vi) of Lemma 2.2 and

(iv) of Lemma 2.4.
In order to prove that X(t) has the properties that we desire we will need the

following lemma describing the structure of X(t) in terms of b-intervals. If b Z, and
Y is a subset of Z,, then we say Y is a b-interval of length rn if the elements of Y are
the elements of an arithmetic progression in Z, of length rn and of period b. Note
that the actual cardinality of a b-interval will be less than its length if its length exceeds
n/(b, n), but if rn <- n then a 1-interval of length m is simply an interval of length rn
in the usual sense except that it is interpreted mod n. A b-block of a subset Y is a
b-interval which is maximal with respect to containment in Y.

LEMMA 2.6. For each q in Q, b in B, and x in q-lA(t) there is a b-interval Y of
length such that z Yand Y c q-lA (t).

Proof. Let a map QB {0, 1,..., t-1} such that qx Yzon a(z)z. Then it is
easy to check that the set Y {x +fb: -a (qb) <- f <- 1 a (qb)} has the desired
properties.

COROtLAR 2.7. For each b in B we have I(X(t)+b)\X(t)l<-IX(t)[/t.
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162 MARIA KLAWE

Proof. Let X,... ,Xa be the b-blocks of X(t). By Lemma 2.6 each X is a
b-interval of length at least t, and it is easy to see that this implies that for any such
that IX[ < we must have (X + b) X. Consequently I(X(t)+ b)\X(t)l <-I{i" Ix, => t)l <-
IX(t)I/t since the Xi are disjoint.

In proving a similar result about IpX(t)\X(t)! for each pP, we will use the
following observation, whose proof we omit since it is almost trivial.

LEMMA 2.8. I.f Y is a 1-interval, then .for any rZ,, we have
IY[-((r,n)-l).

PROPOSIWION 2.9. I[p P then [pX(t)\x(t)l <21x(t)l/s.
Prool. This clearly holds for s 2 so suppose s-> 3. For 0-<_ <=s- 1 let D

o,.) q-aA (t), and let D D0\(t.J a_-<_-<- D). Then it is easy to see that for _-> 1
we have pDD_, and hence (pX(t)\X(t))=pD. Thus it suttiees to show that
Iol < 21x(t)]/s. Let Y, , Ya be the a-bocks of D in increasing order with respect
to size, and let m=max(O, max{i’lYl<(s-2)t/(2s(s-1))}). We first show that
Y<-_<=,,, [YI < (s -2)lX(t)l/(s(s 1)). Since every 1-block of Do has length (and hence
cardinality) at least by Lemma 2.6, if ]Yl<(s-2)t/(2s(s-1)) we must have that Y
is adjacent to some 1-block of (U a__<i___<_a Di) either on the right or on the left. Let us
denote this 1-block as b(Y). Notice that any particular 1-block of (Ll_<_i__<s_aDi) could
be b(Y) for at most two distinct since it can border at most one of them on the
right and at most one on the left. Thus
Finally, since Lemma 2.6 implies that lb(Y,)l>=t for each such i, we have IY, l<
(s-2)lb(Y)[/(2s(s- 1)), which completes this part of the proof.

It now suffices to prove that E,.<,<_alY, l<ls(t)l/(s-), since (s-2)/(s(s-1))+
1/(s- 1) 2Is. For convenience, if Z is a subset of Z, and is a nonnegative integer,
we will use p-Z to denote the subset (p)-aZ. We first observe that if 0<=i </" -<_s 1
then p-D (3 p-iD , since if x p-D (3 p-iD then px D (3 Di_, which contradicts
the definition of D. Combining this with the fact that the Y are disjoint, it is easy to
see that the sets p-iy are disjoint, and hence Ix(t)l>_-y..<,yo___, Ip-Y,l. By
Lemma 2.8 Ip-Y,l>-_lY,[-(p.n)+X, and since (p,n)<-s/, clearly (pi, n)<-(s/a)i.
Combining these observations, and recalling that s/a->_s >_-3, we see that Ix(t)i>
Ym<i<_a(slYi]-(s/)). Moreover, since t->r, Lemma 2.2(iii) implies (s/a)<=
(s-2)t/(2s(s-X))<-_lY,[, and hence Ix(t)l>Z..<,_a(s-X)lY, l. or equivalently
Z,u IY, <lx(t)[/(s 1) as promised. [3

The remainder of this section is devoted to showing that for r=
max {t" Ix(t)[ <-cn}, we have an [X(r)l _-<cn. Note that Corollary 2.5 guarantees
that r ->_ ’.

PROPOSITION 2.10. IA(r + 1)\A(r)lan/(2sk(s/a)k).
Proof. Let C=A(r+ 1)\A(r), and suppose Icl>n/(2s(s/a)). For each x in

C we can choose a mapping QB {0, 1,. , r} such that x oBax(Z)Z. Also, for
each such x we define a subset T(x) of QB by T(x)={z" a(z)=r}. Notice that
T(x) f since otherwise we would have x A (r). Finally for each nonempty subset
Z of QB we define a subset g(Z) of C as g(Z)={x" T(x)=Z}. Now since Icl>
an/(2sk(s/a)k), there must be some nonempty subset Z of QB with ]g(Z)l>
an/(2sk(s/a)’21nl). As r->" and IOBl-<(k +l)s, by Lemma 2.2(iv) this implies

For each with 1 <=i <-r let y(i) be the element Yziz. From the definition of
g(Z) it is easy to see that for each such we have (g(Z)-y(i))=A(r). Moreover, we
claim that if 1 -<i </" _<-r we have (g(Z)-y(i))fq(g(Z)-y(f))= (, since otherwise we
would have g(Z)fq(g(Z)-y(])+y(i))=g(Z)fq(g(Z)-y([-i)); yet g(Z)fq
(g(Z)-y(f-i))=CA(r)=(. Thus IA(r)l>-_Za_,_[g(Z)[=rlg(Z)[>n, and
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LIMITATIONS ON CONSTRUCTIONS OF EXPANDING GRAPHS 163

hence [X(r)l > an, which contradicts the definition of r. Consequently we must have
Icl<-n/(2s(s/)).

COROLLARY 2.11. ]X(r)]>an/2.
Proof. It suffices to show that [X(r + 1)\X(r)l <=an since by the definition of r

we have IX(r / 1)l > cn. By the same arguments used in the proof of Lemma 2.4(iii)
we have [q-(A(r+l)\A(r))l<=(s/)kl(A(r+l)\A(r)[. Thus ]X(r+l)\X(r)[<-_
[Ql(s/a)SklA(r+l)\A(r)[<=sk(s/a)SklA(r+l)\A(r)l<=an/2 by Proposition 2.10. [3

If we take X =X(r), combining Corollaries 2.7 and 2.11 with Proposition 2.9,
we see that X satisfies Properties 2.3.1, 2.3.2 and 2.3.3, thus completing the proof
of Theorem 2.1.

Remark 2.12. It is easy to see that by choosing s and r in slightly different ways
one can prove slightly different results. For example, by changing s to
[c (log cn/log log tn) 1/3k /2)j, one obtains the following result’

THEOREM 2.13. For each real number t between 0 and 1 and each n >-0 there
exists a subsetXofZ, with n/2 <-Ixl <- tn, such thatfor 1 <= <- k we have If,(X)\Xl <
31xl/l (log cn log log tn)l/3k+2)J.

Notice that this avoids having to choose n sufficiently large at the expense of
weakening the bound on [fi(X)\X[. Of course this theorem is trivially true for any
subset Ixl when s -<_ 3, so really, when one takes Theorem 2.1 into consideration, this
theorem is only interesting for n (approximately) in the range defined by the inequality
(3/Ce)3t+2 <--log cen <--21/)+’.

Similarly our choosing cen/2 and an as the limits on the size ofX were completely
arbitrary. In fact if 0 </3 < ce < 1, there is a constant N depending on k, ce and/3, and
a function g(n, ce,/3, k) going to infinity as n goes to infinity, such that for each n _->N
there exists a subset X of Z, with n <-_lxl<-n and ]fi(X)\Xl<=3lXl/g(n,a,,k).

3. Rational coefficients. The special problems, which occur in constructing non-
expanding subsets for the case of rational coefficients, are basically caused by the way
that the floor function /x interacts with the multiplying and taking inverses mod n.
Our first goal in this section is to prove a result similar to Proposition 2.9. We wish
to show that the subset of elements x of X(t) such that p-lx is not contained in X(t)
is small relative to [x(t)l for each p in P with p <=s. This result will be proved in
Proposition 3.2, but first we prove a useful technical lemma.

For any subset Z of Z, let/3 (Z) denote the number of 1-blocks in Z.
LEMMA 3.1. Let Z, V, W be subsets o]: Zn, and let p, Z, such that 0 <p < < n.

Moreover, suppose that every 1-block in either V or W has length at least t, and that
pZ c V\ W. Then there is a subset h (Z) of V\Wsuch that

(i) (h(Z))<=(Z)+lh(Z)l/t,
(ii) Ih(Z)l>-_([zl-2pt(z))/(1 +(p- 1)/t), and
(iii) Ih (z)[ _-<

Proof. If D {x, x + 1,. ., y} is a 1-block of Z, we will use p&D to denote the
1-block {px, px + 1,... ,py}. Let K t.J{p&D: D is a 1-block of Z}, and let H
K f’)(V\ W). We first prove that in fact H K 0 V. Clearly it suffices to show that for
any 1-block D of Z we have p&D (’1 (V\W) p&D f’) V. Suppose z p&D f-I V f-) W.
Since pD V\ W, z cannot be in pD and hence for some adjacent pair x, x + 1 in D,
we have px < z <p(x + 1). This shows that the 1-block of W containing z has length
at most p- 1, which contradicts the assumption that every 1-block of W has length
at least t.

We next prove that Ig\vl<-(p-1)(lnl/t+(g)). Let Y be a 1-block of K.
From the definition of K and the fact that pZ V, it is easy to see that every 1-block
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164 MARIA KLAWE

of Y\ V has length at most p- 1. Moreover, since every 1-block of V has length at
least it is easy to see that/S(Y\ V) is at most Y CI VI/t + 1. Combining these we see
that Y\ vI <-_ (p 1)(1Y vI/ + 1), which yields IK\ VI--< (p 1)(IHI/t + fl (K)).

To complete the proof thatH satisfies (ii), we will first show that [KI IZI- p/S (K).
Clearly every element of pZ is a multiple of p, and thus from the definition of K we
see that every 1-block of K both begins and ends with a multiple of p. As at most
one out of any (p, n) consecutive elements in 1-block can be a multiple of p (and
hence an element of pZ), this shows that IKI => (p, n)(IpZ]-/3 (K)). Obviously IpZ] >-
Izl/(p,n), so Igl>-IZl-pt(g) as desired. Finally, we have IHI=IKI-IK\VI >
Izl-pt (g)-(p )(t (g)/ Inl/t), yielding Inl--> (Iz[- 2p/3 (z))/(1 / (p 1)/t) since
obviously/3 (K) -</3 (Z).

Let K’ be any subset of K with/3(K’)-<fl(K), and let H’= K’f3 V. Since every
1-block of V has length at least t, for each 1-block Y’ of K’ we must have/3(Y’ V)<=
]Y’tq Vl/t + 1, and hence /3(n’)_-<X{IY’f3 vlt+ 1: Y’ is a 1-block of K’}<-
B(g’)+ln’l/t<-B(Z)+ln’l/t. If Inl<-IZ[ we may take h(Z) to be H since the
preceding remark shows that H satisfies (i). Otherwise take h (Z) to be K’f’l V, where
K’ is a subset of K with/3(K’)-</3 (K) and IK’tq VI Izl. To see that such a set K’
must exist note that it is easy to construct a family {K (r): 1 <- r <= [K]} of nested subsets
of K with/3 (K (r)) -</3 (K) and IK (r)l- r. Now combining the facts that ]K (Igl) vI >
[zl and ]g(r) (q Vl-[g(r-1)f’) V]=<l for each r> 1 shows that ]g(r)fq vl-Izl for
some r. I3

For each p P and with 0-<_i =<s- 1 let V(p, i)= Urop.i)r-lA(t), and let
W(p,i)=tAo<_i<=i V(p,j). For convenience we also adopt the convention that
W(p,-1) for any p.

PROPOSITION 3.2. For each p in P such that p <-s we have

IV(p, s 1)\ W(p, s -2)1-< 21x(t)l
$

Proof. We assume s-> 3 since the proposition holds trivially for s 2. Let
(s -2)t/(2s(s 1)), and let Z(0) be the union of the 1-blocks of V(p, s 1)\ W(p, s -2)
which have length at least . Then by the same argument as used in the proof of
Proposition 2.9, we have ](V(p, s 1)\ W(p, s 2))\Z (0)1 < (s 2)[x(t)l/(s(s )), and
hence it suffices to show that Iz(o)l<lg(t)l/(s-1). Now observe that if i->l then
p(V(p, i)\ W(p, 1)) c V(p, 1)\ W(p, 2). Moreover, by Lemma 2.6 every block
in either V(p, i) or W(p, i-1) has length at least t. Thus by Lemma 3.1 we can
recursively define Z(i) h(Z(i 1)) such that Z(i) c V(p, s 1)\ W(p, s 2),
fl(Z(i))<-fl(Z(i-1))+lZ(i)[/t, and ,(]z(i)l-2pl(z(i-1)))<__lz(i)l<__lz(i-1)[
where 3’ 1/(1 +(p- 1)/t). Since every 1-block in Z(0) has length at least :, clearly
t (Z(0))-<_ Iz(0)l/ , Also obviously [z(i)]/t <-Iz(0)l/, and hence by induction one can
trivially show that (Z(i))<=3IZ(O)[/. Using this, again by induction it is easy to
show that Iz(i)[>-v’lz(o)l-3lz(o)l/. Since the sets V(p,s-i-1)\W(p,s-i-2)
are disjoint for O<=i<=s-1, the sets Z(i) are disjoint, and hence IX(t)[=>
Y.o<_,<=s_l[Z(i)[>=lZ(O)lY.o<_,_s_l(y’-3p/). Now y =(1/(l+(p-1)/t))’, and it is
easy to verify that (1/(l+(p-1)/t))>=l-i(p-1)/t. This shows that Ix(t)l_->
IZ (0)l(s s2(p 1)It 3p/:). Finally it can easily be checked that s2(p 1)It + 3Sp/ <
lsincet->-,s=>3, s->pandk->l. [3

Proposition 3.2 yields the following corollary which will be useful for proving the
nonexpansion of shuffle-exchange graphs, as well as of G(n, F) when the mappings
in F have rational coefficients.
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LIMITATIONS ON CONSTRUCTIONS OF EXPANDING GRAPHS 165

COROLLARY 3.3. For each p in P such that p <-s we have

[{x X(t)" {{x/pJ +jn/(p,n)" O<-i<(p,n)}\X(t)# }l< -+ Ix(t)l.

Proof. Let W be the set of elements of W(p, s- 2) which are among the first p
elements of their 1-block in W(p, s-2). We claim that for each x in W(p, s-2)\W
we have {[x/pJ+fn/(p,n):O<=f<(p,n)}cX(t). First note that since x-p[x/pJ<=
p-1 we have p[x/pJW(p,s-2) and hence p-l(p[x/pJ)cX(t). However,
p-l(p[x/pJ)={[x/pJ +fn/(p,n): 0=</’<(p,n)}. Thus ]{x S(t): {[x/pJ +jn/(p,n):
O<-/<(p,n)}\X(t)(R)}l<-_lX(t)\W(p,s-2)l+lWI. Clearly X(t)\W(p,s-2)=
V(p,s-1)\W(p,s-2) so we have Is(t)\W(p,s-2)l<21x(t)l/s by Proposition 3.2.
Moreover, since every 1-block of W(p,s-2) has size at least t, we have
plw(p,s-2)l/t<-plX(t)l/t, which completes the proof. I-1

Let X1 ={x X(t): [x/q] is not in X(t)}, X2={x X(t): px is not in X(t)}, and
X3 {x X(t): {x, x + 1, , x +p 1}\X(t) }. In the following corollary we will
use to distinguish real multiplication from multiplication mod n. Thus for p and x
in Z,p .x denotes the product of p and x regarded as real numbers, whereas px
denotes the product mod n.

COROLLARY 3.4. If p,qe and q<-s then I([p.X(t)/qJmodn)\X(t)l <
(2*(q + 1)Is +q *(p *p + 1)It)IX(t)[.

Proof. We first show that l( p , X( t)/ q mod n)\X( t)l <= lXll + q , IXzl +p , q , IX31.
Let Y={x X(t): {[x/qJ}{p [x/qJ,p [x/qJ +l,...,p [x/q] +p-1}=X(t)}. It is
not hard to see that for any x we have [p,x/qJmodn{p[x/qJ,p[x/qJ+l,.., p [x/qJ +p- 1}, and hence we see that [p, Y/qJ mod n X(t). This shows that
[[p*X(t)/qJ\X(t)]<-IX(t)\Y[. Now clearly [X(t)\Yl<-_lXll+l{x:[x/qJX2}l+
I{x: p [x/qJ X3}I, from which it is easy to see that sl(t)\YI <- Ix l /q, Ix21 /
P *q * Ixl.

The proof is completed by giving appropriate upper bounds for Ix l, Ix=l and
Ix l. From Corollary 3.3 we have Ix l (2/s +q/t)]X(t)], and from the proof of
Proposition 2.9 it is easy to see that Ix=l (2/s)[X(t)[. Finally, since every 1-block in
X(t) has length at least t, one easily concludes that Ix l (p/t)lx(t)]. [

Combining this corollary with the results of the previous section yields the
following theorem.

TIqEOREM 3.5. Let F be the family (px/q + b: 1 <-_ <= k} and let 0 < a < 1. Then
there exists a constant N depending only on a and k such that for each n >-N there
exists a subset X of inputs of G(n,F) with an/2<lXl<-an and
( +(,F, n))lxI, where 8(a,F, n) is the function Yl<-,<=k ((3+qi)/S +(q,(p2i + 1))/r)
where

s= [(logcen/loglogan)l/3k+2)J and 7"=

If d is a divisor of n, the perfect d-shuffle rearranges the numbers 1 to n into
the sequence

1, (n/d)+ 1,..., ((d- 1)n/d)+ 1,

2, (n/d)+2,..., ((d-1)n/d)+2,.

(n/d), (n/d) + (n/d),..., n

which corresponds to partitioning the numbers 1 to n into d segments of equal length
and performing a perfect shuffle. Suppose D is a subset of the divisors of n. If a graph
has inputs x(i) and outputs y(i) for 1 _<-i-<n, we say that it is a D-shuffle-exchange
graph if x(i) and y(j) are adjacent whenever for some d in D the perfect d-shuffle
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166 MARIA KLAWE

places in the/’th position, or/" in the ith position. By this definition, the usual
shuffle-exchange graph is simply a {2}-shuffle-exchange graph. It is not hard to see
that the D-shutfle-exchange graph is a partial subgraph of G(n,F(D)) where F(D)
is the family {dx +b: d D, O<=b <-d- 1}(.J{x/d +fn/d + 1: d D, 0-</" =<d- 1}. If we
take P D and B {1}, then it is not hard to see from Lemma 2.6 and Corollary 3.3
that, regarding X(t) as a subset of inputs in G(n,F(D)), if d =<s for each d in D
we have Irx(t)l<(l+Y,,o(4/s/2d/-))lx(t)l<(l+SlDI/s)lx(t)! since d<-s
obviously implies 2d/’r < 1/s. This shows that as long as the divisors used are small
enough relative to n, shuffle exchange graphs cannot be expanding graphs.
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discussions.
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