
The Gaber-Galil expander

1 The graph

We define 4 maps on V = Z2
n: A(x1, x2) = (x1 + x2, x2), B(x1, x2) = (x1, x1 + x2),

E1(x1, x2) = (x1 + 1, x2) and E2(x1, x2) = (x1, x2 + 1) (all additions are modulo n). We
also think of the maps A and B as 2 × 2 matrices so that At = B and vice versa. We
wish to show that these maps (with their inverses) give an expander graph on V . Let
S = {A,A−1, B,B−1, E1, E

−1
1 , E2, E

−1
2 }. For each map T ∈ S we associate an n2 × n2

permutation matrix MT so that MT (x, y) = 1 if y = T (x) and is zero otherwise.

Let Ω = L2(Z2
n). We think of functions in Ω as column vectors of length n2 with real

(or complex) entries. For a function f ∈ Ω and a map T : V 7→ V we have MT f ∈ Ω with
(MT f)(x) = f(Tx). The adjacency matrix of our 8 regular graph is M =

∑
T∈SMT . For

f ∈ Ω, we denote R(f) = 〈f,Mf〉 =
∑

x∈V f(x)(Mf)(x). By the spectral definition of
expanders, we need to show:

Theorem 1.1. Let f ∈ Ω be so that
∑

x f(x) = 0. Then, there exists λ > 0 (independent
of n) so that

R(f) ≤ (8− λ)‖f‖2.

The idea of the proof is as follows. We split the matrix M into two matrices:

M1 = ME1 +ME−1
1

+ME2 +ME−1
2
,

M2 = MA +MA−1 +MB +MB−1

and define R1(f) = 〈f,M1f〉, R2(f) = 〈f,M2f〉. We will show that, for each f (with entries
summing to zero) either |R1(f)| ≤ (4 − λ)‖f‖2 or |R2(f)| ≤ (4 − λ)‖f‖2. In other words,
either the maps E1, E2 ‘expand’ f (call this case I) or the maps A,B ‘expand’ f (case II).
To characterize those functions f in each case, we need to define the Fourier transform.

2 Fourier transform

For x, y ∈ Z2
n we let x · y = x1y1 + x2y2 (mod n) to avoid confusion with the inner product

notation over Ω. Let ω = e2πi/n. We define the Fourier coefficients of f ∈ Ω by f̂(y) =

1



∑
a f(a)ω−a·y. We thus have:

f(x) =
1

n2

∑
y∈V

f̂(y)ωy·x,

〈f, g〉 =
1

n2
〈f̂ , ĝ〉.

It is also easy to check that, if g(x) = f(Tx + b), with T an invertible 2 × 2 matrix and
b ∈ Z2

n, then

ĝ(y) = ω(T−1b)·yf̂
(
(T−1)ty

)
.

For our 4 maps A,B,E1, E2 we have

M̂Af(y) = f̂(B−1y),

M̂Bf(y) = f̂(A−1y),

M̂E1f(y) = ωy1 f̂(y),

M̂E2f(y) = ωy2 f̂(y),

and similarly for the inverses. Notice the first two identities imply that for all f ∈ Ω,

M̂2f = M2f̂ and so

R2(f) = 〈f,M2f〉 = n−2〈f̂ , M̂2f〉 = n−2〈f̂ ,M2f̂〉 = n−2R2(f̂). (1)

In other words, the expansion of M2 can be analyzed for f or for f̂ interchangeably .

3 The two cases

Roughly speaking, if M1 does not expand f (i.e., R1(f) is large) then it means that the
Fourier transform of f is concentrated in ‘low frequencies’: meaning most of the Fourier
mass is at points y ∈ V with both y1 and y2 ‘close’ to zero (or to n). This makes sense, as
the shift operators E1 and E2 should not expand ‘smooth’ functions (this is similar to taking
derivatives). Thus, it is enough to show that M2 expands functions whose Fourier mass is
concentrated around the origin (but is zero at (0, 0)). By (1) it is enough to bound R2(f̂)
or, equivalently, to show that M2 expands sets that are around the origin (the transition
from functions to sets is via Cheeger). But analyzing the action of M2 on sets around the
origin is the same as analyzing its action on Z2, which is easily seen to be expanding.

We now set up the necessary notations: For t ∈ Zn we let |t| = min{t, n− t}. We define
the set W = {(x1, x2) ∈ V | |x1|, |x2| ≤ n/4}. For a function f ∈ Ω and a set C ⊂ Z2

n we
define the restriction of f to C as (f |C)(x) = f(x) for x ∈ C and zero otherwise.

The first Lemma takes care of functions that have ‘enough’ high frequencies.

2



Lemma 3.1. [Expansion in high frequencies] Let f ∈ Ω be such that ‖f̂ |W ‖2 ≤ (1− ε)‖f̂‖2.
Then

|R1(f)| ≤ (4− 2ε)‖f‖2.

The second lemma deals with the other case:

Lemma 3.2. [Expansion in low frequencies] Let f ∈ Ω be such that
∑

x f(x) = 0 and

‖f̂ |W ‖2 ≥ (1− ε)‖f̂‖2. Then

R2(f) ≤ (4− 1/64 + ε)‖f‖2.

The theorem clearly follows from these two lemmas (taking ε to be sufficiently small
and separating into the two cases).

4 Proof of Lemma 3.1

We have 〈f̂ , M̂Eif〉 = 〈f̂ , ωyi f̂〉 and similarly for E−1
i (with ω−yi instead of ωyi). Therefore

〈f̂ , M̂1f〉 = 〈f̂ , (ωy1 + ω−y1)f̂〉+ 〈f̂ , (ωy2 + ω−y2)f̂〉
=

∑
y∈V
|f̂(y)|2φ(y),

with φ(y) = 2 cos(2πy1/n) + 2 cos(2πy2/n). If y 6∈W then one of the cosines is negative and
so φ(y) ≤ 2. Since φ(y) ≤ 4 everywhere else, we get

〈f̂ , M̂1f〉 ≤ 4
∑
y∈W
|f̂(y)|2 + 2

∑
y 6∈W
|f̂(y)|2

≤ 4(1− ε)‖f̂‖2 + 2ε‖f̂‖2 = (4− 2ε)‖f‖2.

Thus,

R1(f) = 〈f,M1f〉 = n−2〈f̂ , M̂1f〉 ≤ n−2(4− 2ε)‖f̂‖2 = (4− 2ε)‖f‖2.

This completes the proof of the lemma.

5 Proof of Lemma 3.2

We first argue about the case where the support of f̂ is completely contained in W . Then
the Lemma will follow by loosing an additional O(ε) coming from the mass outside W . So,
suppose that f̂(y) = 0 for all y 6∈ W . We define h(y) = |f̂(y)| so that h is a non negative
function with support contained in W .
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A level-set of a non negative function h : V 7→ R is a set of the form L = {x ∈
V |h(x) ≥ `} for some `. We cal the level set ‘trivial’ if ` = 0. For a graph G = (V,E), the
edge-expansion φG(S) for a set S ⊂ V is defined as

φG(S) =
|E(S, S̄)|
|S|

.

The following statement is the main part in the proof of the Cheeger inequality.

Theorem 5.1 (Cheeger). Let G = (V,E) be a d-regular graph with adjacency matrix M .
Let h : V 7→ R be a non-negative function and suppose that φG(S) ≥ τ for any non trivial
level set S of h. Then,

〈h,Mh〉 ≤ (d− λ)‖h‖2,

with λ ≥ τ2/4d.

To apply this theorem on our h = |f̂ | we have to observe that all level sets of h are
contained in W \ {(0, 0)} and show that all such sets expand by A,B,A−1, B−1. We first
show that this set of 4 maps is an expander in Z2 and then argue that this implies expansion
also for sets in W ⊂ Z2

n (we could argue directly on Z2
n but moving to Z makes the expansion

more transparant). For this purpose we let GZ denote the graph on Z2 and edges given by
A,B,A−1, B−1 and GZn the same graph on vertex set Z2

n. We denote by ΓG(S) the set of
vertices in G that have at least one neighbor in S (in the graph G).

Claim 5.2 (Expansion in Z2). Let S ⊂ Z2 \ {(0, 0)} be a finite set. Then, φGZ(S) ≥ 1
2 .

Proof. Let Z0 be the union of the two axis (i.e., all points with one zero coordinate). We
break S into 5 sets: S0 = S∩Z0 and S1, S2, S3, S4 the intersections of S with the 4 quadrants.
It is easy to see that for each i ∈ [4] we have |Γ(Si)| = 2|Si| (e.g., A,B map S1 into two
disjoint sets) and the 4 sets Γ(Si) are disjoint from each other. This means that

|E(S − S0, S̄)| ≥ |S| − |S0|.

Now, every edge leaving S0 (there are 4S0 edges) has its other endpoint outside S0.
Some of these might be in S−S0 but the number of these is at most 3(|S| − |S0|) (since we
showed that at least |S| − |S0| leave S − S0 into the complement of S). Thus, we have

|E(S0, S̄)| ≥ 4|S0| − 3(|S| − |S0|) = 7|S0| − 3|S|.

Considering the two cases |S0| > |S|/2 and |S0| ≤ |S|/2 we see that in both we have
|E(S, S̄)| ≥ 1

2 |S|.

Corollary 5.3 (Expansion in W ⊂ Z2
n). Let S ⊂W \ {(0, 0)}. Then, φGZn (S) ≥ 1

2 .
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Proof. The set W is naturally divided into 4 disjoint parts, corresponding to the 4 quadrants
of Z2. We ‘re-arrange’ these into a new set S′ ⊂ Z2 as follows: Let θ : Zn 7→ Z be defined as
θ(t) = sign(t) · |t| with sign(t) = 1 for t ≤ n/2 and −1 for t > n/2. Then S′ = θ(S) (applied
coordinate-wise). So each vertex in S′ has a single vertex in S associated with it. Observe
that, if an edge of GZ goes from S′ to its complement, then the same edge in GZn (leaving
the corresponding vertex) will go from S to its complement (this is true since edges are ‘too
short’ to reach from one of the four parts of W to another). This competes the proof.

Using the corollary, and Theorem 5.1 (Cheeger), we get that

〈h,M2h〉 ≤ (4− 1/64)‖h‖2.

Using (1), and the triangle inequality (moving from f̂ to h), this gives:

R2(f) = n−2〈f̂ ,M2f̂〉 ≤ n−2〈h,M2h〉
≤ (4− 1/64)n−2‖h‖2 = (4− 1/64)n−2‖f̂‖2 = (4− 1/64)‖f‖2.

To prove the lemma, we need to argue about functions f so that ‖f̂ |W ‖ ≥ (1 − ε)‖f‖.
For such an f we can write f as a sum f = f1 + f2 with f̂1 = f̂ |W and f̂2 = f̂ |W̄ . By the
properties of the Fourier transform, and since 〈f̂1, f̂2〉 = 0 we have ‖f‖2 = ‖f1‖2 + ‖f2‖2.
Notice also that

∑
x f1(x) = 0 since f̂1(0, 0) = f̂(0, 0) = 0. For f1 we have established

the inequality R2(f1) = 〈f1,M2f1〉 ≤ (4 − 1/64)‖f1‖2. We also know that ‖f2‖2 ≤ ε‖f‖2.
Putting things together, and using ‖M2v‖ ≤ 4‖v‖ for any v, we get:

R2(f) = 〈f,M2f〉 = 〈f1 + f2,M2(f1 + f2)〉
= R2(f1) + 〈f2,M2f1〉+ 〈f1,M2f2〉+ 〈f2,M2f2〉
≤ (4− 1/64)‖f1‖2 + 4ε‖f‖2 + 4ε‖f‖2 + 4ε2‖f‖2

≤ (4− 1/64 + 3ε)‖f‖2.

This completes the proof of the lemma.
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