The Gaber-Galil expander

1 The graph

We define 4 maps on $V=\mathbb{Z}_{n}^{2}: A\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{2}\right), B\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{2}\right)$, $E_{1}\left(x_{1}, x_{2}\right)=\left(x_{1}+1, x_{2}\right)$ and $E_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}+1\right)$ (all additions are modulo n). We also think of the maps A and B as 2×2 matrices so that $A^{t}=B$ and vice versa. We wish to show that these maps (with their inverses) give an expander graph on V. Let $S=\left\{A, A^{-1}, B, B^{-1}, E_{1}, E_{1}^{-1}, E_{2}, E_{2}^{-1}\right\}$. For each map $T \in S$ we associate an $n^{2} \times n^{2}$ permutation matrix M_{T} so that $M_{T}(x, y)=1$ if $y=T(x)$ and is zero otherwise.

Let $\Omega=L^{2}\left(\mathbb{Z}_{n}^{2}\right)$. We think of functions in Ω as column vectors of length n^{2} with real (or complex) entries. For a function $f \in \Omega$ and a map $T: V \mapsto V$ we have $M_{T} f \in \Omega$ with $\left(M_{T} f\right)(x)=f(T x)$. The adjacency matrix of our 8 regular graph is $M=\sum_{T \in S} M_{T}$. For $f \in \Omega$, we denote $R(f)=\langle f, M f\rangle=\sum_{x \in V} f(x)(M f)(x)$. By the spectral definition of expanders, we need to show:

Theorem 1.1. Let $f \in \Omega$ be so that $\sum_{x} f(x)=0$. Then, there exists $\lambda>0$ (independent of n) so that

$$
R(f) \leq(8-\lambda)\|f\|^{2} .
$$

The idea of the proof is as follows. We split the matrix M into two matrices:

$$
\begin{gathered}
M_{1}=M_{E_{1}}+M_{E_{1}^{-1}}+M_{E_{2}}+M_{E_{2}^{-1}}, \\
M_{2}=M_{A}+M_{A^{-1}}+M_{B}+M_{B^{-1}}
\end{gathered}
$$

and define $R_{1}(f)=\left\langle f, M_{1} f\right\rangle, R_{2}(f)=\left\langle f, M_{2} f\right\rangle$. We will show that, for each f (with entries summing to zero) either $\left|R_{1}(f)\right| \leq(4-\lambda)\|f\|^{2}$ or $\left|R_{2}(f)\right| \leq(4-\lambda)\|f\|^{2}$. In other words, either the maps E_{1}, E_{2} 'expand' f (call this case I) or the maps A, B 'expand' f (case II). To characterize those functions f in each case, we need to define the Fourier transform.

2 Fourier transform

For $x, y \in \mathbb{Z}_{n}^{2}$ we let $x \cdot y=x_{1} y_{1}+x_{2} y_{2}(\bmod n)$ to avoid confusion with the inner product notation over Ω. Let $\omega=e^{2 \pi i / n}$. We define the Fourier coefficients of $f \in \Omega$ by $\hat{f}(y)=$
$\sum_{a} f(a) \omega^{-a \cdot y}$. We thus have:

$$
\begin{gathered}
f(x)=\frac{1}{n^{2}} \sum_{y \in V} \hat{f}(y) \omega^{y \cdot x}, \\
\langle f, g\rangle=\frac{1}{n^{2}}\langle\hat{f}, \hat{g}\rangle .
\end{gathered}
$$

It is also easy to check that, if $g(x)=f(T x+b)$, with T an invertible 2×2 matrix and $b \in \mathbb{Z}_{n}^{2}$, then

$$
\hat{g}(y)=\omega^{\left(T^{-1} b\right) \cdot y} \hat{f}\left(\left(T^{-1}\right)^{t} y\right) .
$$

For our 4 maps A, B, E_{1}, E_{2} we have

$$
\begin{aligned}
& \widehat{M_{A} f}(y)=\hat{f}\left(B^{-1} y\right), \\
& \widehat{M_{B} f}(y)=\hat{f}\left(A^{-1} y\right), \\
& \widehat{M_{E_{1}} f}(y)=\omega^{y_{1}} \hat{f}(y), \\
& \widehat{M_{E_{2}} f}(y)=\omega^{y_{2}} \hat{f}(y),
\end{aligned}
$$

and similarly for the inverses. Notice the first two identities imply that for all $f \in \Omega$, $\widehat{M_{2} f}=M_{2} \hat{f}$ and so

$$
\begin{equation*}
R_{2}(f)=\left\langle f, M_{2} f\right\rangle=n^{-2}\left\langle\hat{f}, \widehat{M_{2} f}\right\rangle=n^{-2}\left\langle\hat{f}, M_{2} \hat{f}\right\rangle=n^{-2} R_{2}(\hat{f}) . \tag{1}
\end{equation*}
$$

In other words, the expansion of M_{2} can be analyzed for f or for \hat{f} interchangeably .

3 The two cases

Roughly speaking, if M_{1} does not expand f (i.e., $R_{1}(f)$ is large) then it means that the Fourier transform of f is concentrated in 'low frequencies': meaning most of the Fourier mass is at points $y \in V$ with both y_{1} and y_{2} 'close' to zero (or to n). This makes sense, as the shift operators E_{1} and E_{2} should not expand 'smooth' functions (this is similar to taking derivatives). Thus, it is enough to show that M_{2} expands functions whose Fourier mass is concentrated around the origin (but is zero at $(0,0)$). By (1) it is enough to bound $R_{2}(\hat{f})$ or, equivalently, to show that M_{2} expands sets that are around the origin (the transition from functions to sets is via Cheeger). But analyzing the action of M_{2} on sets around the origin is the same as analyzing its action on \mathbb{Z}^{2}, which is easily seen to be expanding.

We now set up the necessary notations: For $t \in \mathbb{Z}_{n}$ we let $|t|=\min \{t, n-t\}$. We define the set $W=\left\{\left(x_{1}, x_{2}\right) \in V| | x_{1}\left|,\left|x_{2}\right| \leq n / 4\right\}\right.$. For a function $f \in \Omega$ and a set $C \subset \mathbb{Z}_{n}^{2}$ we define the restriction of f to C as $\left(\left.f\right|_{C}\right)(x)=f(x)$ for $x \in C$ and zero otherwise.

The first Lemma takes care of functions that have 'enough' high frequencies.

Lemma 3.1. [Expansion in high frequencies] Let $f \in \Omega$ be such that $\left\|\left.\hat{f}\right|_{W}\right\|^{2} \leq(1-\epsilon)\|\hat{f}\|^{2}$. Then

$$
\left|R_{1}(f)\right| \leq(4-2 \epsilon)\|f\|^{2}
$$

The second lemma deals with the other case:
Lemma 3.2. [Expansion in low frequencies] Let $f \in \Omega$ be such that $\sum_{x} f(x)=0$ and $\left\|\left.\hat{f}\right|_{W}\right\|^{2} \geq(1-\epsilon)\|\hat{f}\|^{2}$. Then

$$
R_{2}(f) \leq(4-1 / 64+\epsilon)\|f\|^{2} .
$$

The theorem clearly follows from these two lemmas (taking ϵ to be sufficiently small and separating into the two cases).

4 Proof of Lemma 3.1

We have $\left\langle\hat{f}, \widehat{M_{E_{i}} f}\right\rangle=\left\langle\hat{f}, \omega^{y_{i}} \hat{f}\right\rangle$ and similarly for E_{i}^{-1} (with $\omega^{-y_{i}}$ instead of $\omega^{y_{i}}$). Therefore

$$
\begin{aligned}
\left\langle\hat{f}, \widehat{M_{1} f}\right\rangle & =\left\langle\hat{f},\left(\omega^{y_{1}}+\omega^{-y_{1}}\right) \hat{f}\right\rangle+\left\langle\hat{f},\left(\omega^{y_{2}}+\omega^{-y_{2}}\right) \hat{f}\right\rangle \\
& =\sum_{y \in V}|\hat{f}(y)|^{2} \phi(y),
\end{aligned}
$$

with $\phi(y)=2 \cos \left(2 \pi y_{1} / n\right)+2 \cos \left(2 \pi y_{2} / n\right)$. If $y \notin W$ then one of the cosines is negative and so $\phi(y) \leq 2$. Since $\phi(y) \leq 4$ everywhere else, we get

$$
\begin{aligned}
\left\langle\hat{f}, \widehat{M_{1} f}\right\rangle & \leq 4 \sum_{y \in W}|\hat{f}(y)|^{2}+2 \sum_{y \notin W}|\hat{f}(y)|^{2} \\
& \leq 4(1-\epsilon)\|\hat{f}\|^{2}+2 \epsilon\|\hat{f}\|^{2}=(4-2 \epsilon)\|f\|^{2}
\end{aligned}
$$

Thus,

$$
R_{1}(f)=\left\langle f, M_{1} f\right\rangle=n^{-2}\left\langle\hat{f}, \widehat{M_{1} f}\right\rangle \leq n^{-2}(4-2 \epsilon)\|\hat{f}\|^{2}=(4-2 \epsilon)\|f\|^{2} .
$$

This completes the proof of the lemma.

5 Proof of Lemma 3.2

We first argue about the case where the support of \hat{f} is completely contained in W. Then the Lemma will follow by loosing an additional $O(\epsilon)$ coming from the mass outside W. So, suppose that $\hat{f}(y)=0$ for all $y \notin W$. We define $h(y)=|\hat{f}(y)|$ so that h is a non negative function with support contained in W.

A level-set of a non negative function $h: V \mapsto \mathbb{R}$ is a set of the form $L=\{x \in$ $V \mid h(x) \geq \ell\}$ for some ℓ. We cal the level set 'trivial' if $\ell=0$. For a graph $G=(V, E)$, the edge-expansion $\phi_{G}(S)$ for a set $S \subset V$ is defined as

$$
\phi_{G}(S)=\frac{|E(S, \bar{S})|}{|S|} .
$$

The following statement is the main part in the proof of the Cheeger inequality.
Theorem 5.1 (Cheeger). Let $G=(V, E)$ be a d-regular graph with adjacency matrix M. Let $h: V \mapsto \mathbb{R}$ be a non-negative function and suppose that $\phi_{G}(S) \geq \tau$ for any non trivial level set S of h. Then,

$$
\langle h, M h\rangle \leq(d-\lambda)\|h\|^{2},
$$

with $\lambda \geq \tau^{2} / 4 d$.
To apply this theorem on our $h=|\hat{f}|$ we have to observe that all level sets of h are contained in $W \backslash\{(0,0)\}$ and show that all such sets expand by A, B, A^{-1}, B^{-1}. We first show that this set of 4 maps is an expander in \mathbb{Z}^{2} and then argue that this implies expansion also for sets in $W \subset \mathbb{Z}_{n}^{2}$ (we could argue directly on \mathbb{Z}_{n}^{2} but moving to \mathbb{Z} makes the expansion more transparant). For this purpose we let $G_{\mathbb{Z}}$ denote the graph on \mathbb{Z}^{2} and edges given by A, B, A^{-1}, B^{-1} and $G_{\mathbb{Z}_{n}}$ the same graph on vertex set \mathbb{Z}_{n}^{2}. We denote by $\Gamma_{G}(S)$ the set of vertices in G that have at least one neighbor in S (in the graph G).
Claim 5.2 (Expansion in \mathbb{Z}^{2}). Let $S \subset \mathbb{Z}^{2} \backslash\{(0,0)\}$ be a finite set. Then, $\phi_{G_{\mathbb{Z}}}(S) \geq \frac{1}{2}$.
Proof. Let \mathbb{Z}_{0} be the union of the two axis (i.e., all points with one zero coordinate). We break S into 5 sets: $S_{0}=S \cap \mathbb{Z}_{0}$ and $S_{1}, S_{2}, S_{3}, S_{4}$ the intersections of S with the 4 quadrants. It is easy to see that for each $i \in[4]$ we have $\left|\Gamma\left(S_{i}\right)\right|=2\left|S_{i}\right|$ (e.g., A, B map S_{1} into two disjoint sets) and the 4 sets $\Gamma\left(S_{i}\right)$ are disjoint from each other. This means that

$$
\left|E\left(S-S_{0}, \bar{S}\right)\right| \geq|S|-\left|S_{0}\right| .
$$

Now, every edge leaving S_{0} (there are $4 S_{0}$ edges) has its other endpoint outside S_{0}. Some of these might be in $S-S_{0}$ but the number of these is at most $3\left(|S|-\left|S_{0}\right|\right)$ (since we showed that at least $|S|-\left|S_{0}\right|$ leave $S-S_{0}$ into the complement of S). Thus, we have

$$
\left|E\left(S_{0}, \bar{S}\right)\right| \geq 4\left|S_{0}\right|-3\left(|S|-\left|S_{0}\right|\right)=7\left|S_{0}\right|-3|S| .
$$

Considering the two cases $\left|S_{0}\right|>|S| / 2$ and $\left|S_{0}\right| \leq|S| / 2$ we see that in both we have $|E(S, \bar{S})| \geq \frac{1}{2}|S|$.
Corollary 5.3 (Expansion in $W \subset \mathbb{Z}_{n}^{2}$). Let $S \subset W \backslash\{(0,0)\}$. Then, $\phi_{G_{\mathbb{Z}_{n}}}(S) \geq \frac{1}{2}$.

Proof. The set W is naturally divided into 4 disjoint parts, corresponding to the 4 quadrants of \mathbb{Z}^{2}. We 're-arrange' these into a new set $S^{\prime} \subset \mathbb{Z}^{2}$ as follows: Let $\theta: \mathbb{Z}_{n} \mapsto \mathbb{Z}$ be defined as $\theta(t)=\operatorname{sign}(t) \cdot|t|$ with $\operatorname{sign}(t)=1$ for $t \leq n / 2$ and -1 for $t>n / 2$. Then $S^{\prime}=\theta(S)$ (applied coordinate-wise). So each vertex in S^{\prime} has a single vertex in S associated with it. Observe that, if an edge of $G_{\mathbb{Z}}$ goes from S^{\prime} to its complement, then the same edge in $G_{\mathbb{Z}_{n}}$ (leaving the corresponding vertex) will go from S to its complement (this is true since edges are 'too short' to reach from one of the four parts of W to another). This competes the proof.

Using the corollary, and Theorem 5.1 (Cheeger), we get that

$$
\left\langle h, M_{2} h\right\rangle \leq(4-1 / 64)\|h\|^{2} .
$$

Using (1), and the triangle inequality (moving from \hat{f} to h), this gives:

$$
\begin{aligned}
R_{2}(f) & =n^{-2}\left\langle\hat{f}, M_{2} \hat{f}\right\rangle \leq n^{-2}\left\langle h, M_{2} h\right\rangle \\
& \leq(4-1 / 64) n^{-2}\|h\|^{2}=(4-1 / 64) n^{-2}\|\hat{f}\|^{2}=(4-1 / 64)\|f\|^{2}
\end{aligned}
$$

To prove the lemma, we need to argue about functions f so that $\left\|\left.\hat{f}\right|_{W}\right\| \geq(1-\epsilon)\|f\|$. For such an f we can write f as a sum $f=f_{1}+f_{2}$ with $\hat{f}_{1}=\left.\hat{f}\right|_{W}$ and $\hat{f}_{2}=\left.\hat{f}\right|_{\bar{W}}$. By the properties of the Fourier transform, and since $\left\langle\hat{f}_{1}, \hat{f}_{2}\right\rangle=0$ we have $\|f\|^{2}=\left\|f_{1}\right\|^{2}+\left\|f_{2}\right\|^{2}$. Notice also that $\sum_{x} f_{1}(x)=0$ since $\hat{f}_{1}(0,0)=\hat{f}(0,0)=0$. For f_{1} we have established the inequality $R_{2}\left(f_{1}\right)=\left\langle f_{1}, M_{2} f_{1}\right\rangle \leq(4-1 / 64)\left\|f_{1}\right\|^{2}$. We also know that $\left\|f_{2}\right\|^{2} \leq \epsilon\|f\|^{2}$. Putting things together, and using $\left\|M_{2} v\right\| \leq 4\|v\|$ for any v, we get:

$$
\begin{aligned}
R_{2}(f) & =\left\langle f, M_{2} f\right\rangle=\left\langle f_{1}+f_{2}, M_{2}\left(f_{1}+f_{2}\right)\right\rangle \\
& =R_{2}\left(f_{1}\right)+\left\langle f_{2}, M_{2} f_{1}\right\rangle+\left\langle f_{1}, M_{2} f_{2}\right\rangle+\left\langle f_{2}, M_{2} f_{2}\right\rangle \\
& \leq(4-1 / 64)\left\|f_{1}\right\|^{2}+4 \epsilon\|f\|^{2}+4 \epsilon\|f\|^{2}+4 \epsilon^{2}\|f\|^{2} \\
& \leq(4-1 / 64+3 \epsilon)\|f\|^{2} .
\end{aligned}
$$

This completes the proof of the lemma.

