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1 Overview

Applications in complex systems such as the Internet have spawned recent interest in studying
situations involving multiple agents with their individual cost or utility functions. In this lecture,
we introduce an algorithmic framework for studying combinatorial problems in the presence of
multiple agents with submodular cost functions. We study several fundamental covering problems
(Vertex Cover, Shortest Path, Perfect Matching, and Spanning Tree) in this setting and establish
tight upper and lower bounds for the approximability of these problems.

As an example consider a setting where we have three agents each having a set function representing
her costs for subsets of edges. The agents wish to collectively build a spanning tree for a given
graph having the minimum cost. Note that this is quite easy to do if the agent’s cost functions are
linear i.e. the cost of any subset of edges is simply the cost of each of its elements. In this case this
problem reduces to the classical minium spanning tree problem since for each edge we only need
to consider the agent with the least cost.

However we wish to model economic incentives such as decreasing marginal cost and economy of
scale and towards this end we will use submodular cost functions to model these properties. In this
lecture we will discuss various issues involved in designing efficient approximation algorithms for
combinatorial optimization over submodular cost functions.

1.1 General Framework

Throughout this talk we will use G(V,E) to denote the given graph and use i o index the agents.
The ith agent’s cost function will be denoted by fi. We will make the following minimal assumptions
over these functions.

1. Normalized: fi(φ) = 0

2. Monotone: fi(T ) ≥ fi(S) for every T ⊆ S.

3. Submodularity: fi(T + e)− fi(T ) ≥ fi(S + e)− fi(S) for every T ⊆ S and e /∈ S.

Intuitively the last property states that the incremental cost of adding an element e to a set S is
smaller than the incremental cost of adding the same element to any of the subsets of S. This
property captures the economic observation of decreasing marginal cost.

Let us define the following class of combinatorial problems with multi-agent submodular cost func-
tions (MSCP) - We are given a set of elements X and a collection C ⊆ 2X . this collection may be
exponentially large and may be specified by a combinatorial propoerty. We are also given k agents,
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where each agent i specifies a normalized monotone submodular cost function fi : 2X → R+. The
goal is to find a set S ∈ C and a partition S1, ..., Sk of S such that

∑
i fi(Si) is minimized.

Remark: Since submodular functions are defined over an exponentially large domain we will
assume value oracle access to them, i.e. we will assume that each of the functions is given by a
value oracle that can be queried to get the value of any set.

1.2 Our Results

Table 1: Results

Single-agent Multi-agent

Lower bound Upper bound Lower bound Upper bound

Vertex Cover 2− ε 2 Ω(log n) 2 log n

Shortest Path Ω(n2/3) O(n2/3) Ω(n2/3) O(n2/3)

Perfect Matching Ω(n) n Ω(n) n

Spanning Tree Ω(n) n Ω(n) n

We studied the following four fundamental combinatorial optimization problems in the frameowrk
described above. for each of the these problems we give optimal algorithms and matching lower
bounds. Our lower bounds are information theoretic and our algorithms are based on techniques
such as rounding of configurational LPs, approximating sumdodular functions and greedy.For each
of the above problems, we study both the single agent and the multi-agent setting.

• Submodular Vertex Cover (MS-VC): We are given an undirected graph G(V,E). Ele-
ment set X is the same as the set of vertices V and the collection C consists of all the vertex
covers of the graph. Recall that a set S ⊆ V is a vertex cover if every e ∈ E is incident on a
vertex in S.

• Submodular Shortest Path (MS-SP): We are given a connected undirected graphG(V,E),
and a pair of vertices s, t ∈ V . Element set X is the same as the set of edges E and the
collection C consists of all the paths from s to t.

• Submodular Minimum Perfect Matchings (MS-MPM): In this setting, we have a
undirected graph G = (V,E) with cost functions over E. G contains at least one perfect
matching. Element set X is the set of all edges, and the collection C is defined as the set of
all perfect matchings of G. Recall that a set M ⊆ E is a perfect matching of G if exactly one
edge in M is incident on every vertex.

• Submodular Minimum Spanning Tree (MS-MST): We are given a connected undi-
rected graph G = (V,E) with cost functions over E. Element set X is the set of all edges,
and the collection C is the set of spanning trees of G. Recall that a spanning tree is a minimal
connected subgraph of G.
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1.3 Related Work

Submodular functions have been of great interest in Optimization in the have received considerable
attention over the last past three decades. The most fundamental of them is, perhaps, the non-
monotone submodular function minimization problem. A sequence of works in this direction [Sch00,
IFF01, Iwa03, Orl07, Iwa08, IO09] has resulted in fast strongly polynomial time combinatorial
algorithms. Another related work is that of non-monotone submodular function maximization
[FMV07]. Both these algorithms are sometimes used as a subroutine in solving the configuration
LPs corresponding to some other submodular combinatorial optimization problem.

Another body of work in optimization over submodular functions deals with welfare maximiza-
tion [CCPV07, Von08, FV06, KLMM08]. Calinescu et al. [CCPV07] studied submodular function
maximization subject to matroid constraints. They showed that their problem contains as a sub-
case many other allocation problems, thus giving a unified framework for studying such problems.
Matching information theoretic lower bounds were established in [MSV08].

Very recently, Svitkina and Fleischer [SF08] studied submodular objective function for problems

like Sparsest cut, load balancing, and knapsack. They gave O(
√

n
logn) upper and lower bounds for

all these problems, showing that all these problems become much more hard in the submodular
setting. Some other related work in optimization that uses submodular functions include [SSW07,
HST05, ST06, Svi04, Wol82].

2 Submodular Shortest Path

In this section we will discuss the submodular shortest path problem(MS-SP) defined above.

2.1 Algorithm for Submodular Shortest Path Problem

We will now briefly discuss an O(n2/3) factor approximation algorithm for the Submodular shortest
path problem for a single agent. The algorithm may be viewed as a combination of two different
subroutines that work for different settings. Througout this section we will use f to denote the
cost function for the agent and use OPT to denote the cost of the optimal s-t path.

Linear Approximation: As the first attempt let us try to approximate f by a linear cost
function. We will use we to denote the cost of a edge e. The idea is that simply guessing the
costliest edge in the optimal path gives a good enough approximation if the optimal path isnt too
long. So suppose e∗ is the costliest edge in the optimal path. Let us remove all edges that are
costlier than e* from the graph to generate residual graph G′. Let P1 be the s-t path with the
fewest edges in G′. The following lemma bounds the cost of P1.

Lemma 1. Cost(P1) ≤ Diameter(G′).OPT

Proof. Observe that the path returned by our algorithm can be as long as the diameter of the
residual graph. Since each edge in the residual graph is cheaper than we, which in turn is a lower
bound on OPT, the total cost of P1 is at most the we times the diameter of G′. This gives the
desired bound.
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Note that in the worse case the diameter can be as large as O(n) in which was this method is not
a good approximation.

Ellipsoidal Approximation: We will now present another attempt towards approximating the
cost of the optimal s-t path using an ellipsoidal approximation using John’s theorem given below.

Theorem 2. For every polytope P , there exists an ellipsoid contained in it that can be scaled by a
factor of O(

√
n) to contain P .

John’s theorem is an inherently non-constructive statement about the structure of polytopes. Goe-
mans et.al [GHIM09] studied a contructive version of this problem and showed that if the polytope
is polymatroid then this ellipsoid can be found in polynomial time. In the context of submodular
functions their result can be stated as follows.

Theorem 3. For any monotone submodular function f over a ground set X there exists a polyno-
mial time algorithm to compute an assignment χ : X → R+ such that the function g : 2X → R+

defined as g(S) =
√∑

e∈S χ(e) satisfies g(S) ≤ f(S) ≤
√
|X|g(S) for every S ⊆ X.

In our setting X is the set of all edges in the given graph. Consider the following algorithm
for finding the shortest s-t path. Begin by approximating the given function f by its ellipsoidal
approximation g. Find the shortest s-t path with respect to g, say P2, and return it as the solution.
Note that this is easy to do due to the special structure of the ellipsoidal approximation. The
following lemma bounds the cost of P2.

Lemma 4. f(P2) ≤
√
EOPT

Proof. The proof follows trivially by the properties of the ellipsoidal approximation and by the
choice of g.

Note that none of the above two techniques would work for a dense graph wih large diameter. Now
we will present an algorithm that combines the insight obtained from the preceeding discussion to
give a factor O(n2/3) approximation algorithm.

O(n2/3) Algorithm: The algorithm runs in 5 steps described below.

1. Pruning As before guess the costliest edge in the optimal path and prune away all edges
costier than it.

2. Contraction Iteratively search for vertices with degree larger than n1/3 and contract theor
neighborhood.

3. Ellipsoid Approximation Calculate ellipsoidal approximation (d, g) for the residual graph.

4. Search Find shortest s-t path according to g in the residual graph.

5. Reconstruction Replace the path through each contracted vertex with the path having the
fewest edges.
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Analysis: Let P be the path returned by our algorithm and let R be the set of edges in the
residual graph. Let us split the edges in the path returned by our algorithm in to two sets -
P1 = R ∩ P and P2 = (E/R) ∩ P . In lemma 5 and 6 we will bound the cost of P1 and P2 with
respect to OPT.

Lemma 5. f(P1) ≤ n2/3OPT

Proof. The first thing to note is that since the degree of each vertex in R is at most n1/3 the total
number of edges in R is n4/3. So we have the following chain of inequalities that prove the claim.

f(P1) ≤
√
E(R).g(P1) (1)

≤
√
E(R).OPT (2)

≤
√
E(R).f(OPT ) (3)

≤ n2/3f(OPT ) (4)

Lemma 6. f(P2) ≤ n2/3OPT

Proof. To bound the cost of P2 we note that every vertex in the dense region has degree larger
than n1/3 thus the diameter of any of the dense regions is bounded by Diameter(Gi) ≤ |Gi|/n1/3.
Since we pick the path with the fewest edges through each of the dense regions, in the worst case
we will use as many edges as the diameter while bridging across a dense region. Summing over all
dense regions we see that here too the cost of segment P2 is at most O(n2/3) times the optimal
solution.

f(P2) ≤
∑
i

diam(Gi)w
∗
e (5)

≤
∑
i

|Gi|/n1/3w∗e (6)

≤ (n/n1/3)w∗e (7)

≤ n2/3OPT (8)

3 Information Theoretic Lower Bounds

In this section we will discuss the information theoretic lower bound for the submodular shortest
path problem. We begin by informally defining information theoretic lower bounds. Suppose we are
have an algorithm that makes polynomially many queries to the value oracle for f . Also suppose
the algorithm is allowed unbounded amount of time to process the results of these queries. If
suppose we can show that even if given infinite amount of time that any algorithm can not get
the optimal solution using only polynomially many queries then the problem is said to have an
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information theoretic lower bound. Intuitively this means that it is not computation but the lack
of information that is preventing us from getting the optimal solution. Note that such a bound is
not contingent on P vs NP.

3.1 General Technique

Let us assume that we have two functions f and g which satisfy these two properties.

1. The optimal value of g is much larger than the optimal value of f .

2. f and g agree on most sets S i.e. For any randomized algorithm A, f(Q) = g(Q) with high
probabilty for every query Q made by A. Here probability is calculated over random bits in
the algorithm.

Also note that this must be true for every algorithm, not just a particular algorithm. We can use
Yaos lemma to convert a statement over all randmized algorithms over deterministic input, to one
over deterministic algorithms over distributions over inputs. Applying Yao’s lemma to the second
statement we find that it is equivalent to finding f and a distribution D from which we choose g,
such that for an arbitrary query Q, f(Q) = g(Q) with high probability. Before we jump in to the
analysis for the lower bound let us do a warm up by deriving a lower bound while ignoring the
combinatorial structure.

3.2 Non-combinatorial Setting

In this setting we prove the fololwing theorem.

Theorem 7. It is information-theoretically hard to learn a submodular function to a factor better
than n1/2/ log n in polynomial value queries.

Proof. From the preceeding discussion in order to show a lower bound we need to define a function
f and a distribution from which we choose function g. We define f(S) = min {|S|, α}. We choose g
from the following distribution - Pick a random subset R of size α from X, and define the function
gR(S) = min

{
|S ∩ R̄|+ min(S ∩R, β)

}
.

The constants α and β will be determined later. The next step is to show that these two functions
are hard to distinguish. To do so we need to derive properties of the optimal query that has the
largest probability of distinguishing f and g in particular we can show that the optimal query has
to be of size α.

Finally we bound the probability of distinguishing f and g through a query of size α in the following
lemma.

Lemma 8.

Pr[gR(Q) < f(Q)] = Pr[|Q ∩R| > β]
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Proof.

Pr[gR(Q) < f(Q)] = Pr[gR(Q) < α]

= Pr[|Q ∩ R̄|+ min {|Q ∩R|, β} < α]

= Pr[|Q ∩R| > β]

Setting α =
√
n log n and β = 1.001 log2 n ensures that |Q ∩ R| is super-logarithmic and a simple

application of chernoff bounds proves that f and g are hard to distinguish. Next note that f(R) =
min {|R|, α} = |R| = α = n1/2 log n and gR(R) = min|R ∩ R̄|+min(R ∩R, β) = β = log2 n Thus,
even though f and g are similar on most queries they have vastly differing values on R. Thus it
is hard to learn a submodular function to a factor better than α/β =

√
n/ log n which proves the

theorem.

3.3 Combinatorial Setting

Note that in the previous section we used a randomly chosen hidden set as a proxy for the optimal
solution. If we try to extend these ideas to the combinatorial setting for obtaining lower bounds
for the shortest path problem we immediately hit a road-block - randomly chosen sets of the given
domain rarely form a feasible solution for most combinatorial problems. For example a randomly
chosen set of edges rarely yields an s-t path in a graph. We circumvent these problem by the
following two tricks.

1. Do not choose R randomly from the entire domain X, instead sample R uniformly at random
froma subdomain of X.

2. Use a subset of R as a proxy for the solution.

Now we will put these ideas into action to prove the following theorem.

Theorem 9. Submodular Shortest Path problem is hard to approximate to a factor better than
O(n2/3)

Proof. We consider the level graph with n2/3 levels for our purposes. Level 1 has just s and the
last level has just vertex t. Each of the other levels has n1/3 vertices and there is a complete graph
between successive levels. Let us partition the edges between alternate levels in to two disjoint sets
Y and B. Define f(S) = min(|S∩B|, α) and define gR(S) = min {|S ∩R ∩B|+ min(S ∩R ∩B, β)}
where R ⊂ B is chosen uniformly at random. We will use the second trick mentioned above as a
guiding principle to determine the size of R. We want a subset of R to be a proxy for the optimal
solution under function g. Thus if we set R to be n2/3 log2 n then by standard coupon collector
arguments we have an edge from R landing in each of the even levels. These edges together with
the free edges in set Y can be used to build a s-t path having small cost β. Setting α = n2/3 log2 n
and β = log2 n, we can show that f and g are indeed indistinguishable. The optimal solution with
respect to f has cost n2/3 where as the optimal solution with respect to gR has small optimal cost
β = log2 n. This proves the theorem.
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4 Discussion

Even though the results here are tight, the lower bounds are polynomially large and raise the
question about the right model to study economies of scale. Note that the above model yielded
information theoretic lower bounds which seems to suggest that these models are much to gen-
eral and motivates us to consider succinctly representable submodular functions. In [GTW10] we
considered the discounted price model that is a special case of the above model.

We define a function d : R+ → R+ to be a discounted price function if it satisfies the following
properties: (1) d(0) = 0; (2) d is increasing; (3) d(x) ≤ x for all x; (4) d is concave. We study
combinatorial problems in the following general setting. We are given a set of elements E, and a
collection Ω of its subsets. We are also given a set A of k agents where each agent a ∈ A specifies
a cost function ca : E → R+ where ca(e) indicates her cost for the element e. Each agent also
declares a discounted price function da. If an agent a is assigned a set of elements T , then her
total price is specified by da(

∑
e∈T ca(e)). This is called her discounted price. For ease of notation

we will use da(T ) to denote da(
∑

e∈T ca(e)). The objective is to select a subset S from Ω and a
partition S1, S2, ..., Sk of S, such that

∑
a∈A da(Sa) is minimized.

Note that the functions defined above are indeed submodular and can be represented in polyno-
mially many bits. We considered various combinatorial problems in this setting and gave vastly
improved bounds for them. Here our lower bounds were based on P vs NP, instead of being infor-
mation theoretic. Finding newer models which lie between linear and submodular cost functions
and establishing sharp approximability thresholds is an interesting avenue in this line of research.
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