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Algorithmic versions of the LLL

A = {A1,A2, . . . ,Am}: “bad” events, each defined by
indep. random variables X1,X2, . . . ,Xn.

Ubiquitous version with neigborhood relation Γ on A.

Are all Ai simultaneously avoidable?
Output = assignment to all Xj ; output size = n.

Main results:

“Any” LLL application → poly(n)-time alg. (even if
m � poly(n)), if we give a tiny slack in the LLL-condition;

MAX SAT–like problems: avoiding “most” Ai (algorithmically)
– interpolation between linearity of expectation and LLL.
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LLL: symmetric version

“Pr[no Ai ] > 0”: Union Bound
∑

i Pr[Ai ] < 1 often too weak.

LLL (symmetric version): Suppose

maxi Pr[Ai ] ≤ p, and

each Ai has ≤ D neighbors.

Then, e · p · (D + 1) ≤ 1 implies Pr[no Ai holds] > 0.

Numerous applications. Typical case: D � m.

Algorithmic version?
Pr[
∧

i Ai ] inevitably small:

Choose indep. set I of the Ai with |I | ≥ m/(D + 1).

Pr[
∧

i Ai ] ≤ Pr[
∧

i∈I Ai ] = (1− p)m/(D+1) ≈ exp(−mp/D).

Aravind Srinivasan University of Maryland, College Park New Constructive Aspects of the Lovász Local Lemma, and their Applications



LLL: symmetric version

“Pr[no Ai ] > 0”: Union Bound
∑

i Pr[Ai ] < 1 often too weak.

LLL (symmetric version): Suppose

maxi Pr[Ai ] ≤ p, and

each Ai has ≤ D neighbors.

Then, e · p · (D + 1) ≤ 1 implies Pr[no Ai holds] > 0.

Numerous applications. Typical case: D � m.

Algorithmic version?
Pr[
∧

i Ai ] inevitably small:

Choose indep. set I of the Ai with |I | ≥ m/(D + 1).

Pr[
∧

i Ai ] ≤ Pr[
∧

i∈I Ai ] = (1− p)m/(D+1) ≈ exp(−mp/D).

Aravind Srinivasan University of Maryland, College Park New Constructive Aspects of the Lovász Local Lemma, and their Applications



Application: Domatic Partitions

Feige-Halldórsson-Kortsarz-S: a maximization problem with a
logarithmic apx. threshold.

Graph G ; N+(v) = inclusive neighborhood of vertex v .

Partition vertices into a max. # dominating sets: i.e., “color”
vertices with max. # colors so that

∀ vertices v , all colors visible in N+(v).

[Chen-Jamieson-Balakrishnan-Morris]: wireless coordination.
If (δ,∆) = (min., max.) degrees, OPT ≤ δ + 1.

[FHKS]: apx. threshold = ln∆. Here: 3 ln d–apx. for d-regular G .
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Domatic partitions assuming d -regularity

Randomly color vertices using ` ∼ d/(3 ln d) colors.
Bad event Av ,c : “c not visible at v”.

p = Pr[Av ,c ] = (1− 1/`)d+1 ∼ 1/d3.

Dependence of fixed Av ,c?
Only on Aw ,c ′ with dist(v ,w) ≤ 2.

#w < d2; #c ′ ≤ `. So, D < d3/(3 ln d).

e · p · (D + 1) ≤ 1; thus ∃ good coloring.

Correct constant ′′3′′ → “1′′: iterated app. of LLL, a powerful
methodology ([Molloy-Reed]: “Graph colouring and the
probabilistic method”).
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LLL: Asymmetric Version

LLL, general “asymmetric” version: If ∃x : A → (0, 1) such that

∀i : Pr[Ai ] ≤ x(Ai )
∏

Aj∈Γ(Ai )

(1− x(Aj)),

then Pr[
∧

i Ai ] ≥
∏

i (1− x(Ai )) > 0.

Numerous applications:

(Hyper-)Graph Colorings and Ramsey Numbers

Routing [Leighton-Maggs-Rao]

LP-Integrality gaps [Feige, Leighton-Lu-Rao-S]

Edge-disjoint paths [Andrews] ...
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The Trivial Algorithm

The Trivial Algorithm:

repeat
pick a random assignment for all Xj

until no Ai holds

Theorem (LLL)

If the LLL-conditions hold, then the above algorithm finds a
satisfying assignment with positive probability.

BUT: Run-time usually exponential in m (let alone n).
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The Moser-Tardos Breakthrough

Algorithmic versions of the LLL: [Beck, Alon, Molloy-Reed,
Czumaj-Scheideler, S, Moser, ...] culminating in MT:

The MT Algorithm:

start with an arbitrary assignment
while ∃ event Ai that holds do

assign new random values to the variables of Ai

Theorem (MT)

If the LLL-conditions hold, then the above algorithm finds a
satisfying assignment within an expected

∑
i

x(Ai )
1−x(Ai )

iterations.
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LLL-distribution and the MT-Algorithm

The trivial algorithm outputs a random sample from the
conditional LLL-distribution D, the distribution that conditions on
avoiding all Ai .

A Well-known Bound

For any event B = B(X1,X2, . . . ,Xn),

PrD (B) := Pr

(
B
∣∣ ∧

i

Ai

)
≤ Pr (B) ·

 ∏
Aj∈Γ(B)

(1− x(Aj))

−1

(1)

Theorem

The output distribution of the MT-algorithm satisfies (1).
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LLL-Applications with Exponentially Many Events

Examples:

Acyclic edge coloring

Non-repetitive coloring

Santa Claus problem

Edge-disjoint paths, . . .

Problems with running MT:

1 E[# resamplings]:
∑

i
x(Ai )

1−x(Ai )

2 representation of the bad events

3 verifying a solution / finding some Ai that holds currently
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Solving Problem 1

Theorem

Let δ = mini Pr[Ai ]. Then,

E[# iterations of MT] ≤
∑

i

x(Ai )

1− x(Ai )

≤ (
∑

i

x(Ai )) ·max
i

1

1− x(Ai )

≤ O(n log(1/δ)) ·max
i

1

1− x(Ai )
.

In all app.s known to us, log 1
δ ≤ O(n log n).
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Solving Problem 2+3

How do we represent the events (implicitly) s.t.

checking a solution or

finding some Ai that holds currently

can be done in poly(n) time?

Hopeless:
In most applications this is (NP-)hard

Algorithm: Run MT on a core-subset of the A, of poly(n) size.

Analysis:

Bound the probabilities of non-core events using (1)

Use a union bound over these probabilities to prove that with
high probability all the Ai are avoided.
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Solving Problem 2+3

Theorem

If ∃ε ∈ (0, 1) such that for all Ai ,

Pr[A]1−ε ≤ x(Ai ) ·
∏

Aj∈Γ(Ai )

(1− x(Ai )),

then:

for any p ≥ 1
poly(n) , |{Ai : Pr[Ai ] ≥ p}| ≤ poly(n);

If log 1
δ ≤ poly(n) and the above core is “checkable”, then for

any desired constant c > 0, ∃ Monte Carlo alg. (with
p ∼ n−c/ε) that terminates within O(n

ε log n
ε ) resamplings and

returns a good assignment with probability at least 1− n−c .
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Algorithmic Results

The first/best- known efficient algorithms for:

O(1)–apx. for the Santa Claus problem (Feige’s proof made
constructive)

non-repetitive coloring (proof of
Alon-Grytczuk-Hauszczak-Riordan made constructive)

acyclic edge coloring

edge-disjoint paths (Andrews [2010])
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Allowing some Ai to hold

Interpolating between the LLL and linearity of expectation:

Theorem

In the symmetric LLL with p and D, if D ≤ α · (1/(ep)− 1)
(1 < α < e) then we can make at most ∼ (e ln(α)/α) ·mp of the
Ai to hold, in randomized poly(m) time.
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Open Problems

Is “e ln(α)/α” tight?

Derandomization

Further analysis of dependencies among non-core events

How much slack is really needed?

Lopsided Local Lemma?

Full understanding of [Kolipaka-Szegedy] setting

Aravind Srinivasan University of Maryland, College Park New Constructive Aspects of the Lovász Local Lemma, and their Applications



Thank you!
Questions?
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