New Constructive Aspects of the Lovász Local Lemma, and their Applications

Aravind Srinivasan
University of Maryland, College Park

June 15, 2011

Collaborators: Bernhard Haeupler (MIT) & Barna Saha (UMD)
\(\mathcal{A} = \{ A_1, A_2, \ldots, A_m \} \): “bad” events, each defined by indep. random variables \(X_1, X_2, \ldots, X_n \).

Ubiquitous version with neighborhood relation \(\Gamma \) on \(\mathcal{A} \).

Are all \(A_i \) simultaneously avoidable?

Output = assignment to all \(X_j \); output size = \(n \).
Algorithmic versions of the LLL

\[A = \{A_1, A_2, \ldots, A_m\} \]: “bad” events, each defined by indep. random variables \(X_1, X_2, \ldots, X_n \).

Ubiquitous version with neighborhood relation \(\Gamma \) on \(A \).

Are all \(A_i \) simultaneously avoidable?

Output = assignment to all \(X_j \); output size = \(n \).

Main results:

- “Any” LLL application \(\rightarrow \) poly(\(n \))-time alg. (even if \(m \gg \text{poly}(n) \)), if we give a tiny slack in the LLL-condition;

- MAX SAT–like problems: avoiding “most” \(A_i \) (algorithmically) – interpolation between linearity of expectation and LLL.
"Pr[no \ A_i] > 0": Union Bound $\sum_i \Pr[A_i] < 1$ often too weak.

LLL (symmetric version): Suppose

- $\max_i \Pr[A_i] \leq p$, and
- each A_i has $\leq D$ neighbors.

Then, $e \cdot p \cdot (D + 1) \leq 1$ implies $\Pr[\text{no } A_i \text{ holds}] > 0$.

Numerous applications. Typical case: $D \ll m$.
LLL: symmetric version

“Pr[no A_i] > 0”: Union Bound $\sum_i Pr[A_i] < 1$ often too weak.

LLL (symmetric version): Suppose

- $\max_i Pr[A_i] \leq p$, and
- each A_i has $\leq D$ neighbors.

Then, $e \cdot p \cdot (D + 1) \leq 1$ implies $Pr[\text{no } A_i \text{ holds}] > 0$.

Numerous applications. Typical case: $D \ll m$.

Algorithmic version?

$Pr[\bigwedge_i \overline{A_i}]$ inevitably small:

- Choose indep. set I of the A_i with $|I| \geq m/(D + 1)$.
- $Pr[\bigwedge_i \overline{A_i}] \leq Pr[\bigwedge_{i \in I} \overline{A_i}] = (1 - p)^{m/(D+1)} \approx \exp(-mp/D)$.
Application: Domatic Partitions

Graph G; $N^+(v) =$ inclusive neighborhood of vertex v.

Partition vertices into a max. $\#$ dominating sets: i.e., “color” vertices with max. $\#$ colors so that

$$\forall \text{ vertices } v, \text{ all colors visible in } N^+(v).$$

[Chen-Jamieson-Balakrishnan-Morris]: wireless coordination. If $(\delta, \Delta) =$ (min., max.) degrees, $\text{OPT} \leq \delta + 1$.

Graph G; $N^+(v)$ = inclusive neighborhood of vertex v.

Partition vertices into a max. # dominating sets: i.e., “color” vertices with max. # colors so that

$$\forall \text{ vertices } v, \text{ all colors visible in } N^+(v).$$

[Chen-Jamieson-Balakrishnan-Morris]: wireless coordination. If $(\delta, \Delta) = (\min., \max.)$ degrees, $OPT \leq \delta + 1$.

[FHKS]: apx. threshold $= \ln \Delta$. Here: $3 \ln d$–apx. for d-regular G.
Randomly color vertices using $\ell \sim d/(3 \ln d)$ colors.
Bad event $A_{v,c}$: “c not visible at v”.

\[p = \Pr[A_{v,c}] = (1 - 1/\ell)^{d+1} \sim 1/d^3. \]

Dependence of fixed $A_{v,c}$?
Only on $A_{w,c'}$ with $\text{dist}(v, w) \leq 2$.

$\#w < d^2$; $\#c' \leq \ell$. So, $D < d^3/(3 \ln d)$.

$e \cdot p \cdot (D + 1) \leq 1$; thus \exists good coloring.
Randomly color vertices using $\ell \sim d/(3 \ln d)$ colors. Bad event $A_{v,c}$: “c not visible at v”.

$$p = \Pr[A_{v,c}] = (1 - 1/\ell)^{d+1} \sim 1/d^3.$$

Dependence of fixed $A_{v,c}$?
Only on $A_{w,c'}$ with $\text{dist}(v, w) \leq 2$.

$\#w < d^2; \ #c' \leq \ell$. So, $D < d^3/(3 \ln d)$.

$e \cdot p \cdot (D + 1) \leq 1; \text{ thus } \exists \text{ good coloring}.$

Correct constant ”3” → ”1”: iterated app. of LLL, a powerful methodology ([Molloy-Reed]: “Graph colouring and the probabilistic method”).
LLL, general “asymmetric” version: If \(\exists x : A \rightarrow (0, 1) \) such that

\[
\forall i : \Pr[A_i] \leq x(A_i) \prod_{A_j \in \Gamma(A_i)} (1 - x(A_j)),
\]

then \(\Pr[\bigwedge_i A_i] \geq \prod_i (1 - x(A_i)) > 0. \)

Numerous applications:

- (Hyper-)Graph Colorings and Ramsey Numbers
- Routing [Leighton-Maggs-Rao]
- LP-Integrality gaps [Feige, Leighton-Lu-Rao-S]
- Edge-disjoint paths [Andrews] ...
The Trivial Algorithm:

```
repeat
    pick a random assignment for all $X_j$
until no $A_i$ holds
```
The Trivial Algorithm:

```plaintext
repeat
    pick a random assignment for all $X_j$
until no $A_i$ holds
```

Theorem (LLL)

If the LLL-conditions hold, then the above algorithm finds a satisfying assignment with positive probability.
The Trivial Algorithm:

repeat
 pick a random assignment for all X_j
until no A_i holds

Theorem (LLL)

If the LLL-conditions hold, then the above algorithm finds a satisfying assignment with positive probability.

BUT: Run-time usually exponential in m (let alone n).
Algorithmic versions of the LLL: [Beck, Alon, Molloy-Reed, Czumaj-Scheideler, S, Moser, ...] culminating in MT:

The MT Algorithm:

start with an arbitrary assignment

while \exists event A_i that holds do

assign new random values to the variables of A_i
Algorithmic versions of the LLL: [Beck, Alon, Molloy-Reed, Czumaj-Scheideler, S, Moser, ...] culminating in MT:

The MT Algorithm:

- start with an arbitrary assignment
- while \exists event A_i that holds do
 - assign new random values to the variables of A_i

Theorem (MT)

If the LLL-conditions hold, then the above algorithm finds a satisfying assignment within an expected $\sum_i \frac{x(A_i)}{1-x(A_i)}$ iterations.
LLL-distribution and the MT-Algorithm

The trivial algorithm outputs a random sample from the conditional LLL-distribution \mathcal{D}, the distribution that conditions on avoiding all A_i.

Well-known Bound

For any event $B = B(X_1, X_2, \ldots, X_n)$,

$$\Pr(\mathcal{D}(B)) := \Pr(B | \bigwedge_i A_i) \leq \Pr(B) \cdot \left(\prod_{A_j \in \Gamma(B)} (1 - x(A_j)) \right)^{-1}$$

Theorem

The output distribution of the MT-algorithm satisfies (1).
The trivial algorithm outputs a random sample from the *conditional LLL-distribution* \mathcal{D}, the distribution that conditions on avoiding all A_i.

A Well-known Bound

For any event $B = B(X_1, X_2, \ldots, X_n)$,

$$\Pr_{\mathcal{D}}(B) := \Pr \left(B \mid \bigwedge_i \overline{A_i} \right) \leq \Pr(B) \cdot \left(\prod_{A_j \in \Gamma(B)} (1 - x(A_j)) \right)^{-1}$$

(1)

Theorem

The output distribution of the MT-algorithm satisfies (1).
LLL-distribution and the MT-Algorithm

The trivial algorithm outputs a random sample from the conditional LLL-distribution \mathcal{D}, the distribution that conditions on avoiding all A_i.

A Well-known Bound

For any event $B = B(X_1, X_2, \ldots, X_n)$,

$$\Pr_\mathcal{D}(B) := \Pr \left(B \mid \bigwedge_i \overline{A_i} \right) \leq \Pr(B) \cdot \left(\prod_{A_j \in \Gamma(B)} (1 - x(A_j)) \right)^{-1}$$

(1)

Theorem

The output distribution of the MT-algorithm satisfies (1).
Examples:

- Acyclic edge coloring
- Non-repetitive coloring
- Santa Claus problem
- Edge-disjoint paths, ...
Examples:

- Acyclic edge coloring
- Non-repetitive coloring
- Santa Claus problem
- Edge-disjoint paths, . . .

Problems with running MT:

\[E[\# \text{ resamplings}]: \sum_i \frac{x(A_i)}{1-x(A_i)} \]
Examples:

- Acyclic edge coloring
- Non-repetitive coloring
- Santa Claus problem
- Edge-disjoint paths, ...

Problems with running MT:

1. $E[\# \text{ resamplings}]: \sum_i \frac{x(A_i)}{1-x(A_i)}$
2. Representation of the bad events
Examples:

- Acyclic edge coloring
- Non-repetitive coloring
- Santa Claus problem
- Edge-disjoint paths, ...

Problems with running MT:

1. $\mathbb{E}[\# \text{ resamplings}]: \sum_i \frac{x(A_i)}{1-x(A_i)}$
2. representation of the bad events
3. verifying a solution / finding some A_i that holds currently
Let $\delta = \min_i \Pr[A_i]$. Then,

$$E[\# \text{ iterations of MT}] \leq \sum_i \frac{x(A_i)}{1 - x(A_i)}$$

$$\leq \left(\sum_i x(A_i) \right) \cdot \max_i \frac{1}{1 - x(A_i)}$$

$$\leq O(n \log(1/\delta)) \cdot \max_i \frac{1}{1 - x(A_i)}.$$

In all apps known to us, $\log \frac{1}{\delta} \leq O(n \log n)$.

Aravind Srinivasan University of Maryland, College Park

New Constructive Aspects of the Lovász Local Lemma, and the
Solving Problem 2+3

How do we represent the events (implicitly) s.t.
- checking a solution or
- finding some A_i that holds currently

can be done in $\text{poly}(n)$ time?

Hopeless:
In most applications this is (NP-)hard
How do we represent the events (implicitly) s.t.
- checking a solution or
- finding some A_i that holds currently
can be done in $\text{poly}(n)$ time?

Hopeless:
In most applications this is (NP-)hard

Algorithm: Run MT on a core-subset of the A, of $\text{poly}(n)$ size.
Solving Problem 2+3

How do we represent the events (implicitly) s.t.
 - checking a solution or
 - finding some A_i that holds currently

can be done in poly(n) time?

Hopeless:
In most applications this is (NP-)hard

Algorithm: Run MT on a core-subset of the A, of poly(n) size.

Analysis:
 - Bound the probabilities of non-core events using (1)
How do we represent the events (implicitly) s.t.

- checking a solution or
- finding some A_i that holds currently

can be done in poly(n) time?

Hopeless:
In most applications this is (NP-)hard

Algorithm: Run MT on a core-subset of the A, of poly(n) size.

Analysis:
- Bound the probabilities of non-core events using (1)
- Use a union bound over these probabilities to prove that with high probability all the A_i are avoided.
Theorem

If \(\exists \epsilon \in (0, 1) \) such that for all \(A_i \),

\[
\Pr[A]^{1-\epsilon} \leq x(A_i) \cdot \prod_{A_j \in \Gamma(A_i)} (1 - x(A_i)),
\]

then:

- for any \(p \geq \frac{1}{\text{poly}(n)} \), \(|\{A_i : \Pr[A_i] \geq p\}| \leq \text{poly}(n) \);
- if \(\log \frac{1}{\delta} \leq \text{poly}(n) \) and the above core is “checkable”, then for any desired constant \(c > 0 \), \(\exists \) Monte Carlo alg. (with \(p \sim n^{-c/\epsilon} \)) that terminates within \(O\left(\frac{n}{\epsilon} \log \frac{n}{\epsilon}\right) \) resamplings and returns a good assignment with probability at least \(1 - n^{-c} \).
The first/best-known efficient algorithms for:

- $O(1)$-apx. for the Santa Claus problem (Feige’s proof made constructive)
- non-repetitive coloring (proof of Alon-Grytczuk-Hauszczak-Riordan made constructive)
- acyclic edge coloring
- edge-disjoint paths (Andrews [2010])
Allowing some A_i to hold

Interpolating between the LLL and linearity of expectation:

Theorem

\[
\text{In the symmetric LLL with } p \text{ and } D, \text{ if } D \leq \alpha \cdot \left(\frac{1}{ep} - 1\right) \\
(1 < \alpha < e) \text{ then we can make at most } \sim \left(\frac{e \ln(\alpha)}{\alpha}\right) \cdot mp \text{ of the } \text{A}_i \text{ to hold, in randomized poly(m) time.}
\]
Is \(e \ln(\alpha)/\alpha \) tight?
Derandomization
Further analysis of dependencies among non-core events
How much slack is really needed?
Lopsided Local Lemma?
Full understanding of [Kolipaka-Szegedy] setting
Thank you!
Questions?