
Approximation Algorithms Workshop June 13-17, 2011, Princeton

Lecture Online Algorithms and the k-server problem— June 14, 2011

Joseph (Seffi) Naor Scribe: Mohammad Moharrami

1 Overview

In this lecture, we first discuss the paging/caching problem. Then, we continue by defining the
k-server problem and showing what has been done in the past to find competitive algorithms for
this problem.

In the next section we move on to linear programming. We explain how one can use a primal-dual
approach to achieve an competitive algorithm for (online) Covering/Packing LP-s. Later, we use
this approach to design an algorithm for the allocation problem, the main subroutine used for
solving the k-server problem.

Finally, we wrap-up this lecture with our new result which achieves a competitive factor of Õ(log2 k log3 n)
for the k-server problem on n nodes1. This is joint work with Nikhil Bansal, Niv Buchbinder, and
Aleksander Madry. Our basic approach is based on the framework of [CMP08]. The key idea in our
work is that instead of using the allocation problem (as suggested by [CMP08]), we use the frac-
tional allocation problem to construct a fractional algorithm for the k-server problem. It is fairly
easy to convert the fractional (deterministic) algorithm into a randomized (integral) algorithm.

2 Online Algorithms and the k-Server Problem

2.1 Paging/Caching Problem

Paging/Caching Problem: We have a universe of n pages, a cache of size k � n, and requests
for pages arrive over time. If a requested page is already in the cache there is no penalty for fetching
that page. Otherwise, we have to bring that page into the cache and pay the loading cost for that
page. The main question is “which page should we evict from the cache when the cache is full?”

The goal of a paging algorithm is to minimize the number of cache misses. For α ≥ 1, we say that
a paging algorithm is α-competitive if the total cost that we have to pay is less than α times the
optimal algorithm2.

The problem of minimizing the number of cache misses was studied in [ST85] by Sleator and Tarjan.

Theorem 1. [ST85] LRU (Least Recently Used) algorithm is k-competitive.

They also showed that their algorithm is optimal in the sense that any paging algorithm is at least
k-competitive.

1We use Õ to hide log logn terms.
2We assume that the optimal algorithm knows the sequence of page requests in advance.

1

The algorithm and the lower bound from [ST85] were deterministic and one can ask if using
randomness can help us to achieve a better bound or not. This question was answered positively
in [FKL+91].

Theorem 2. [FKL+91] There is a randomized (Marking) algorithm that is O(log k)-competitive.

They also showed that any randomized algorithm is Ω(log k)-competitive.

2.1.1 k-Server Problem

The k-server problem is a generalization of the paging problem that was first defined in [MMS88].

k-Server Problem: We are given a metric space (X, d) and k servers. We receive requests for
servers over time. Each request is a point in the metric that needs a server, and the question is
which server should we send to that point. The goal in the k-server problem is to minimize the
total distance travelled by servers.

Example: We have k fire trucks on a line and we receive requests when there is a fire at some
point on the line. The goal is to minimize the average response time.

The paging problem is a special case of the k-server problem where the metric is uniform, and
each page corresponds to a point in the metric. The lower bounds of k and Ω(log k) still hold for
deterministic and randomized versions of the k-server problem. It was conjectured in [MMS88]
that there are deterministic and randomized algorithms that meet these lower bounds.

Conjecture[MMS88]: There are k-competitive deterministic and O(log k)-competitive random-
ized algorithms for the k-server problem on any metric space.

The current best deterministic algorithms that is known for the k-server problem is (2k − 1)-
competitive algorithm from [KP94]. On the randomized side, there is an O(log k)-competitive
algorithm for weighted paging from [BBN07]. However, the problem of finding an o(k)-competitive
algorithm for general metric spaces is still open. Even for trees of depth two or line metric there are
no o(k)-competitive known, and the best known algorithm for the line metric is exp(O(

√
log n))-

competitive from [BBN10] which improved the bound O(n2/3) from [CL06].

2.2 Online Packing and Covering Problems

Covering Problem: In a covering problem the objective is to minimize the total cost given by
a linear cost function

∑n
i=1 cixi, and the feasible solution space is defined by a set of m linear

constraints of the form
∑n

i=1 ai,jxi ≥ bj , where the entries ai,j and bj are non-negative. Moreover,
in the solution variables xi must be non-negative.

2

We can write a linear program for the covering problem as follows.

Primal:
min :

∑n
i=1 cixi

subject to:
∀j, 1 ≤ j ≤ m :

∑n
i=1 ai,jxi ≥ bj

∀i, 1 ≤ i ≤ n : xi ≥ 0

The dual of this linear program describes a packing probelm.

Dual:
max :

∑m
j=1 bjyj

subject to:
∀i, 1 ≤ i ≤ n :

∑m
j=1 ai,jyj ≤ ci

∀j , 1 ≤ j ≤ m : yi ≥ 0

Online covering problem: In the online version of the covering problem, constraints arrive one
by one, and at each step we are only allowed to increase the value of variables. In the dual setting
variables arrive one by one and variables must be set upon arrival.

Now, we show how one can obtain an approximation algorithm for the online cover problem. Our
algorithm is based on [BN09]. The key idea for finding an approximate solution is using exponential
update. At step t we receive a new constraint

n∑
i=1

aixi ≤ bt.

After receiving the new constraint, we have to add a new variable yt to the dual and add the term
btyt to the objective function in dual. We also need to modify the constraints in the dual by adding
aiyt term to the ith constraint in the dual. We update the variables in primal and dual such that

dxi
dyt

=
aixi
ci

.

The value of dxi
dyt

is proportional to xi, therefore xi varies as an exponential function of yt. We
increase the value of yt until the new constraint in primal is satisfied. We have

d(
∑n

i=1 cixi)

dyt
=

n∑
i=1

ci

(
aixi
ci

)

=
n∑
i=1

aixi

≤ bt

≤
d(
∑t

j=1 biyi)

dyt

3

This inequality guarantees that the objective function in the dual grows faster than the objective
function in the primal. Let P be the value of the solution for our primal, D be the value for the
dual, and OPT be the value of the optimal solution.

It is possible to show that
{

yi
logn

}
1≤i≤t

is a feasible solution for the dual (see [BN09] for details).

We have
P

log n
≤ D

log n
≤ OPT ≤ P ≤ D,

therefore our algorithm is O(log n)-competitive for the covering problem.

This generic idea and algorithm is applicable to many online problems including: Ski Rental Prob-
lem, Dynamic TCP-acknowledgement, Online Matching.

In general linear programming helps us find the difficulties of the online problem and gives us a
general recipe for both design and analysis of online algorithms via duality.

2.3 Cote, Meyerson and Poplawski [CMP08] Approach to k-Server Problem

Hierarchically Separated Trees: We call a balanced rooted tree α-HST if length of all edges
at height h is α−h.

It is known that any metric space can be embedded into distribution of α-HSTs while incurring
distortion O(log n)[FRT03] (vertices are mapped to the leaves of the tree). Given a c-competitive
algorithm for α-HSTs, we can use this result to construct an O(cα log n)-competitive algorithm for
general metric spaces.

Cote, Meyerson and Poplawski [CMP08] used this idea and tried to solve the k-server problem on
HSTs instead of general metric spaces. Their main tool in constructing the algorithm for HSTs
was the allocation problem on a uniform metric. The solution to the allocation problem was used
to decide how to distribute servers among leaves of tree.

2.3.1 Allocation Problem

Suppose that we have n nodes and k servers. At step t in the allocation problem a request vector

(ht(1), . . . ht(k))

arrives at some node i, and it is guaranteed that ht(1) ≥ ht(1) . . . ≥ ht(k). Upon receiving the
request, we can move servers between nodes. The total cost that we have to pay is sum of the
moving cost and the hit cost. The hit cost is given by ht(ki), where ki is the number of servers at
location i. Our goal in the allocation problem is to minimize the total cost

total cost = moving cost + hit cost.

Note that, the paging problem is an instance of the allocation problem where request vectors are
of the form

(∞, 0, . . . , 0).

Theorem 3. [CMP08] If there is an algorithm for the allocation problem such that

4

1. hit cost ≤ (1 + ε)OPT ,

2. move cost ≤ β(ε)OPT ,

then there exists an O(∆β(1
∆))-competitive algorithm for k-server problem on HSTs, where ∆ is

depth of the tree.

Using this theorem we only need to find a β = O(poly(1
ε)polylog(k, n)) to construct an algorithm

that is polylog(k, n)-competitive.

The main idea in proving Theorem 3 is that we apply the allocation problem recursively on the
nodes of the tree. At time t for each node p we compute the cost restricted to the subtree under
node p if we allow j servers in that subtree. In this construction it is very important to have a good
bound on the hit cost since it multiplies over the levels in the recursion and our algorithm will end
up paying (1 + ε)∆.

The main problem with this approach is that we do not know how to find a good algorithm for the
allocation problem. In their work Cote, Meyerson, and Poplawski [CMP08] gave an algorithm for
a the case where we have only two nodes. Their algorithm for the allocation problem resulted in
an algorithm for k-server problem on binary HSTs.

2.4 Our Results

The next result follows from joint work with Nikhil Bansal, Niv Buchbinder, and Aleksander Madry.

Theorem 4. There is an Õ(log3 n log2 k)-competitive algorithm for the k-server problem on any
metric with n points.

We use a fractional version of the frame work in [CMP08] to prove Theorem 4.

2.5 Fractional Paging and Allocation Problems

Fractional Paging: Similar to original paging problem we have n pages and a cache of size k.
We receive requests for pages over time, and if a page is not in the cache we have to bring it to the
cache. The main difference between the fractional version and original paging problem is that in
the fractional version we are allowed to store a fraction of a page in the cache, and the cost that we
have to pay to bring a page to the cache proportional to the fraction that we have to move from
outside of the cache to to the cache.

Let p1, . . . pn be the fraction of the pages that reside in the cache. If an update changes the state
of the cache from p1, . . . pn to q1, . . . qn, then the cost of that update is given by

cost =
1

2

n∑
i=1

|pi − qi|.

We can interpret the fractional solution as the probability distribution of the states, such that the
fraction pi is the probability that page i is in the cache. Our cost function for the fractional solution

5

is the earth mover’s distance between the two distributions. We can use this observation to update
our distribution at each step of the algorithm and construct a randomized algorithm for the paging
problem that only loses a factor of two in performance compared to the fractional solution.

Now, we can ask if a similar bound also holds for the allocation problem or not.

Fractional Allocation Problem: We define the fractional allocation problem for k servers on n
nodes as follows. For j ∈ {0, . . . k} and i ∈ {1, . . . , n}, let xij be the probability of having j servers
at location i. At any time, for all i ∈ {1, . . . , n}, we have to satisfy the inequality

k∑
j=0

xij = 1.

Moreover, since we have only k servers

n∑
i=1

k∑
j=0

jxij ≤ k.

The hit cost for request vector (h(0), . . . , h(k)), is given by

hit cost =
k∑
j=0

xijh(j),

and the cost for moving mass ε from (i, j) to (i, j′) is ε|j − j′| (it corresponds to changing the
number of servers at location i from j to j′ in the original allocation problem).

Unlike the fractional paging problem, a fractional allocation is not a good approximation to the
allocation problem.

A Gap Example: Consider the allocation problem with two nodes and k servers. Requests alter-
nate between node one with cost vector (1, 0, . . . , 0, 0), and node two with cost vector (1, 1, . . . , 1, 0).
Any integral solution must pay Ω(t) after t steps while the following fractional solution does not
pay any move cost and only pays O(t

k−1) on the hit cost.

x1,1 = 1 hit cost = 0
x2,0 = 1

k−1 , x2,k = 1− 1
k−1 hit cost = 1

k−1

Nonetheless, the fractional solution for the allocation problem is all we need to construct a fractional
algorithm for k-server problem, and we prove an analog version of Theorem 3.

Theorem 5. If there is an algorithm for the fractional allocation problem such that

1. hit cost ≤ (1 + ε)OPT ,

2. move cost ≤ β(ε)OPT ,

6

then there exists an O(∆β(1
∆))-competitive fractional algorithm for k-server problem on HSTs,

where ∆ is depth of the tree.

We show that we can construct a randomized algorithm using the fractional algorithm while losing
only O(1) factor in performance, and finally we design an algorithm for fractional paging problem
with β(ε) = log(kε). In our work, we extended the algorithm and its analysis to the fractional
allocation problem, however we do not present our extension in this lecture.

Fractional Paging Algorithm: Now, we describe our fractional paging algorithm. Our frac-
tional paging algorithm is implicitly based on the primal-dual approach that was discussed earlier
in Section 2.2. Suppose that we have n pages and k servers, and the current state of the cache
contains a pi fraction of page Pi. When we receive a request for a new page Pj , we need to bring
1 − pj mass of page Pj into the cache. To this end we will evict mass from all other pages using
multiplicative weights. The rule for page eviction (in each infinitesimal step) is that we evict page
Pj′ at a rate proportional to 1− pj′ + 1/k.. The intuition for using this rule is that we want be
more conservative evicting from pages having a large mass in the cache.

Overview of the analysis of the paging algorithm: Consider an optimal offline algorithm,
and let Off(t) be the content of the cache after t steps in this algorithm. We analyze the perfor-
mance of our paging algorithm by first defining a potential function Φ(t) and then using it to offset
the cost of our algorithm. Define:

Φ(t) =
∑

i/∈Off(t)

log

(
1 + 1/k

1− pi + 1/k

)
.

The idea behind the definition of Φ(t) is the following. For a page Pi, if our online algorithm and
offline algorithm coincide, then the contribution of Pi to Φ is zero. If our online algorithm has page
Pi in the cache, but the offline algorithm does not have it, then Φ is used to offset the cost, and
when pi is close to one, the contribution of Pi to Φ is large.

We bound the total cost of our algorithm by showing that

Φ(t)− Φ(t− 1) +On(t)−On(t− 1) ≤ O(log k)(Opt(t)−Opt(t− 1)),

where On(t) is the cost of our algorithm after t steps and Opt(t) is the cost of the offline algorithm
after t steps.

2.6 Concluding Remarks

The dependence on ∆ in our paper was removed by extending the allocation problem to weighted
stars. The main question that is still open is whether we can remove the dependence on n or not?
We know that we have to lose a factor of O(log n) when we embed our metric into a distribution
over HSTs, but can we even get a bound for HSTs which is independent of n? Right now our
algorithm depends on the depth of the HST which is O(log n). What about special metrics such as
a line metric?

7

References

[BBN07] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm
for weighted paging. In FOCS, pages 507–517, 2007.

[BBN10] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Metrical task systems and the -server
problem on hsts. In ICALP (1), pages 287–298, 2010.

[BN09] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and pack-
ing. Math. Oper. Res., 34(2):270–286, 2009.

[CL06] Béla Csaba and Sachin Lodha. A randomized on-line algorithm for the -server problem
on a line. Random Struct. Algorithms, 29(1):82–104, 2006.

[CMP08] Aaron Cote, Adam Meyerson, and Laura J. Poplawski. Randomized k-server on hierar-
chical binary trees. In STOC, pages 227–234, 2008.

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In STOC, pages 448–455, 2003.

[KP94] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis. In
FOCS, pages 394–400, 1994.

[MMS88] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algo-
rithms for on-line problems. In STOC, pages 322–333, 1988.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update
and paging rules. Commun. ACM, 28(2):202–208, 1985.

8

