Flow-Cut Gaps and Hardness of Directed Cut Problems

Sanjeev Khanna
University of Pennsylvania

Joint work with: Julia Chuzhoy (TTI)
Minimum Multicut

Input: A graph (directed or undirected) and a collection of \(k \) source-sink pairs \((s_1, t_1), \ldots, (s_k, t_k)\).

Goal: Find a minimum-size subset of edges whose removal disconnects all \(s_i-t_i \) pairs.

Solution cost: 2
Minimum Multicut

- **k=1**: Minimum s-t cut problem, solvable in polynomial time [Ford, Fulkerson ’56].
- **k=2**: Solvable in polynomial time for undirected graphs [Yannakakis, Kanellakis, Cosmadakis, Papadimitriou ’83], but NP-hard for directed graphs [Garg, Vazirani, Yannakakis ’94].
- **k≥3**: NP-hard for directed and undirected graphs [Dahlhaus, Johnson, Papadimitriou, Seymour, Yannakakis ’94].
- **Arbitrary k**: NP-hard even on undirected star graphs [Garg, Vazirani, Yannakakis ’93].
An Integer Program

- For each edge e, a 0/1 indicator variable x_e: x_e is 1 if e is in the solution and 0 otherwise.

- For each source-sink pair s_i-t_i, let P_i be the set of all the paths connecting s_i to t_i.

Constraint: For each path $p \in P_i$, $x_e = 1$ for some $e \in p$.

Goal: Minimize $\sum_e x_e$.
An LP Relaxation

Min $\sum_e x_e$

s.t.

$\forall i \in [1..k], \forall s_i \rightarrow t_i$ paths p

$\sum_{e \in p} x_e \geq 1$

$\forall e \in E$

$0 \leq x_e \leq 1$.

Constraint: Assign length to edges such that any source-sink path has length ≥ 1.

Goal: Minimize total length assigned to edges.
Rounding for a Single s-t Pair (k=1)

- Choose \(r \in (0,1) \) uniformly at random.
- \(S = \) Vertices within distance \(r \) from source \(s \).
- Output the cut \((S, V/S)\).

Any edge \(e=(u,v) \) belongs to the cut with probability:
\[
|\text{dist}(s,u) - \text{dist}(s,v)| \leq x_e
\]

Expected solution cost is \(\sum_e x_e = \text{OPT}_{LP} \)
Arbitrary # of Pairs: Undirected Graphs

Lower bound: $\Omega(\log n)$ [Leighton, Rao '88].

Upper bound: $O(\log n)$ [Garg, Vazirani, Yannakakis '93].
Arbitrary # of Pairs: Directed Graphs

Lower bounds:
- $\Omega(\log n)$.
- $\Omega(k)$ [Saks, Samorodnitsky, Zosin '04].

But $k = O(\log n / \log \log n)$!

Upper bound: $O(n^{11/23})$ [Agarwal, Alon, Charikar' 07]
(Improves $O(n^{1/2})$ bound of [Cheriyan, Karloff, Rabani' 01],
[Gupta '03].)

Integrality gap of directed multicut relaxation?
The Cut and Flow Duality

\[\text{Min } \sum_e x_e \]
\[\text{s.t.} \]
\[\forall i \in [1..k], \forall p \in P_i \]
\[\sum_{e \in P} x_e \geq 1 \]
\[x_e \geq 0 \]

Minimum Fractional Multicut

\[\text{Max } \sum_{i, p \in P_i} f_p \]
\[\text{s.t.} \]
\[\forall i \in [1..k], \forall p \in P_i \]
\[f_p \geq 0 \]
\[\forall e \in E \]
\[\sum_{p: e \in p} f_p \leq 1 \]

Maximum Multicommodity Flow
Flow-Cut Gaps

Max Multicommodity Flow = Min Fractional Multicut

- Best known approximation guarantees for many problems are linked to flow-cut gaps.
 - Multicut
 - Well-linked decompositions
 - Oblivious routing
Our Results

- Flow-cut gap for directed multicut is $\Omega(n^{1/7})$.
 - Improves upon the previous $\Omega(\log n)$ gap.

- An $\Omega(n^{1/7})$ gap between directed sparsest cut and concurrent multicommodity flow.
 - Improves upon the previous $\Omega(\log n)$ gap.

- For any $\varepsilon > 0$, a $2^{\log^{1-\varepsilon} n}$-hardness for directed multicut and directed sparsest cut.
 - Improves upon earlier $\Omega(\log n / \log \log n)$-hardness.
The Multicut Integrality Gap Construction
Vertex Version of Directed Multicut

Input: Same as before.

Goal: Smallest set of non-terminal vertices whose removal disconnects all source-sink pairs.
Integrality Gap Construction

- A parameter n.
- $N = \text{Total \# of vertices} = O(n^7)$.
- $L \approx n / \log n \approx N^{1/7}$.

A multicut instance where:
1. # of vertices on any source-sink path is at least L.
2. Cost of any integral solution is $\Omega(N)$.

Fractional Cost: $O(N/L)$. Integrality Gap $\approx \Omega(N^{1/7})$.
Overview

Step One: A multicut instance H that
- satisfies property (2), and
- satisfies property (1) on a restricted class of paths: the canonical paths are $\Omega(L)$ long.

Step Two: An instance B based on a labeling scheme such that only possible source-sink paths are the canonical paths. But these paths may be short.

Step Three: Compose H and B:
- Only long canonical paths (1).
- Any integral solution has cost $\Omega(N)$ (2).
Step One: The Graph H

- H is a union of k graphs, H_1, H_2, \ldots, H_k

- All graphs H_i share the same set of non-terminal vertices, say, $\{1,\ldots,n\}$.

- Each graph H_i has exactly one source-sink pair s_i-t_i.
Graph H

$\tau_1 \quad \tau_2 \quad \ldots \quad \tau_i \quad \tau_k$

$\sigma_1 \quad \sigma_2 \quad \sigma_i \quad \sigma_k$

Graph H_i

τ_i

σ_i

$L = \frac{n}{4 \log n}$

$\log n$
Graph H

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>\ldots</th>
<th>t_i</th>
<th>t_k</th>
</tr>
</thead>
</table>

H_i

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_i</th>
<th>s_k</th>
</tr>
</thead>
</table>

H_i: t_i connected to s_i
Properties of Graph H

What we need?

(1) Any source-sink path has length $\geq L = n/(4 \log n)$.

(2) Any integral solution needs to delete almost all vertices.
 - To separate a pair s_i-t, need to delete all vertices in one of the L layers in H_i.
 - Prob. that a fixed subset S of $n/16$ non-terminal vertices disconnects all pairs is exp. small.
 - By union bounds, almost certainly no small solution.
What about Property (1)?

Canonical Paths: An $s_i \rightarrow t_i$ path is canonical iff it contains edges of \textit{type-i} only.

- A canonical s_i-t_i path uses only edges from H_i.
- Length of any canonical s_i-t_i path in graph H is L.
Graph H

Graph H_i

\[L = \frac{n}{4 \log n} \]
What about Property (1)?

Canonical Paths: An $s_i \rightarrow t_i$ path is canonical iff it contains edges of type-i only.

- Length of any canonical s_i-t_i path in graph H is L.
- But there are short non-canonical paths between source-sink pairs.

Transform H so that
(1a) Length of any canonical path stays at least L.
(1b) There are no non-canonical source-sink paths.
Step Two

- A multicut instance B, with source-sink pairs and canonical paths for each source-sink pair.

- No non-canonical paths exist in the graph, ensured by using a labeling scheme.

- Any integral solution must remove almost all vertices.

- But canonical paths in graph B can be “short”.
Final Step: Composing H and B

Final Graph G: A “composition” of H and B.

- No non-canonical paths in G: pre-images in B don’t have non-canonical paths.

- No short canonical paths: pre-images in H don’t have short canonical paths.

- Any integral solution must remove almost all vertices.
Putting Things Together ...

- G has $N = O(n^7)$ vertices.

- Each source-sink pair is connected only by a canonical path of length at least $L \approx n / \log n$.

- So there is a fractional solution of cost $O(N/L)$.

- Any integral solution must remove $\Omega(N)$ vertices.

Flow-Cut Gap $= \Omega(L) \approx \Omega(N^{1/7})$
Concluding Remarks

- Polynomial flow-cut gaps in directed graphs.
- Almost polynomial inapproximability results.
- Still a large gap remains between best upper and lower bounds on the flow cut gap.
Thank you!