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1 Overview

In this lecture we study a technique to obtain fast approximation algorithms for various combi-
natorial optimization problems via SDP, significantly improving over interior-point methods. This
technique is called Matrix Multiplicative Weights (Matrix MW for short).

2 Preliminaries

2.1 Notation

Unless specified otherwise, all vectors in this lecture live in Rn, and all matrices are symmetric and
live in Rn×n. For two vectors v,w, let v · w =

∑
i viwi denote their inner product, and v � 0

indicate that all vi ≥ 0. For two matrices A and B, denote by A •B their inner product thinking
of them as vectors in Rn2

, i.e. A • B =
∑

ij AijBij = Tr(A>B). Here Tr(·) denotes the trace
of a matrix. A matrix A is positive semidefinite, denoted by A � 0, if all its eigenvalues are
non-negative. Equivalently, there are n vectors v1,v2, . . . ,vn such that Aij = vi · vj . We denote
by A � B the fact that A−B is positive semidefinite.

2.2 Formulation of SDP

We begin by describing the specific form of SDP we will consider. This is a fairly general form, and
almost all SDP relaxations one encounters can be cast in this form. The goal is to find a matrix X
which satisfies:

A1 •X ≤ 0

A2 •X ≤ 0

...

Am •X ≤ 0

X � 0

Tr(X) = 1

Positive semidefinite matrices X of trace 1 are called density matrices in quantum computing.
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2.3 Ubiquity of SDP

SDP is a widely used technique in approximation algorithms today. Starting with the seminal
work of Goemans and Williamson [GW95] on the MaxCut problem, it has been used in various
other approximation algorithms, such as those for Coloring [ACC06], Graph Partitioning [ARV04],
Constraint Satisfaction [ACMM05], etc. For all these problems, the best known approximation
factor has been obtained via SDP. Other fields, such as Control Theory, have also made wide use
of SDP.

2.4 Algorithms for SDP

SDP is a convex optimization problem, and hence can be solved using standard convex optimization
techniques. The earliest polynomial time (approximation) algorithm for SDP is due to Grötschel,
Lovász, and Schrijver [GLS88] using the ellipsoid algorithm, observing that a separation oracle
for the set of positive semidefinite matrices can be performed via an eigenvector computation.
While the ellipsoid method gives a polynomial time algorithm, its running time is quite high,
making it infeasible in practice. Much better algorithms for SDP were obtained using Interior
Point methods [NN92, Ali95]. These algorithms are still the method of choice for solving SDPs in
practice.

While the Interior Point algorithms are quite practical, theoretically however their running time is
still quite high even for SDP relaxations of basic combinatorial optimization problems like MaxCut.
This issue is exacerbated for problems like Sparsest Cut which make use of O(n3) triangle inequality
constraints.

For this reason, it is of interest to develop specialized methods to solve particular SDPs faster than
Interior Point methods, at least when some approximation is allowed. This motivated Klein and
Lu [KL96] to develop faster algorithms for the MaxCut and Coloring SDPs using the technique of
Lagrangian relaxation. In later work, Arora, Hazan and Kale [AHK05] generalized this technique
for arbitrary SDPs, and obtained faster running times for certain specific SDPs.

All the above mentioned techniques were first developed in the context of linear programs (LP).
Another technique which is very successful in the design of fast algorithms based on LP is the
combinatorial, primal-dual method [GW97]. Such algorithms hadn’t been developed for SDP re-
laxations however for a number of reasons. One is that such algorithms typically make local changes
in the variables, and maintaining positive semidefiniteness becomes difficult. Another reason is that
rounding algorithms based on SDP relaxations are inherently geometric making it difficult to use
them in combinatorial, primal-dual algorithms. Finally, even if we were to surmount these difficul-
ties, a significant issue that still remains is that matrix operations are inherently less efficient to
implement than vector operations, and so running time improvements are difficult.

In this lecture, we describe a technique which tackles these issues and leads to much faster ap-
proximation algorithms for various problems such as MaxCut, Sparsest Cut, Balanced Separator,
Min UnCut, and Min 2CNF Deletion [AK07]. In fact, for MaxCut, this technique gives the first
near-linear time implementation of the Goemans-Williamson approximation algorithm.
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3 Multiplicative Weights for LP

Before giving the Matrix MW algorithm, we first discuss the basic Multiplicative Weights (MW)
algorithm for LP. This is essentially the Winnow algorithm of Littlestone [Lit87]. Consider the
following LP. The goal is to find a vector x which satisfies:

a1 · x ≤ 0

a2 · x ≤ 0

...

am · x ≤ 0

x � 0∑
i

xi = 1

Note the similar form of this LP to the form of the SDP we are concerned with. This similarity
goes deeper: if all the matrices in the SDP are diagonal, then it reduces exactly to the LP given
above. Note that x forms a distribution, analogous to the density matrix in the SDP.

Suppose we want to solve this LP up to an additive error of δ, i.e. we want to find a distribution
x such that for all j = 1, . . . ,m, we have aj · x ≤ δ. Call such an x “δ-feasible”.

Assume that we have access to an algorithm, ViolationChecker, which given a distribution x,
efficiently determines if there is any constraint j such that aj · x > δ. If there isn’t, then we have
found our δ-feasible solution to the LP.

We now give the MW algorithm. It is parameterized by ε ∈ (0, 1) and an integer T > 0.

MW

1. Initialize a weight vector w(1) to the all 1’s vector.

2. For t = 1, 2, . . . , T :

(a) Let x(t) = w(t)/Φ(t), where Φ(t) =
∑n

i=1w
(t)
i is the normalization constant to make

x(t+1) a distribution.

(b) Send x(t) to ViolationChecker.

(c) If ViolationChecker reports that x(t) is δ-feasible, stop and output x(t).

(d) Else, let aj(t) · x(t) > δ be a constraint violated by x(t) found by ViolationChecker.
Update:

w(t+1) = w(t) × exp(−εaj(t)).

The exponential and product above is taken coordinate-wise.

3. Output that the LP is infeasible.

3.1 Analysis

For the analysis, we need to define a parameter, ρ, called the width of the LP:
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Definition 1. Define ρ = maxij |aij |.

Theorem 2. If the MW algorithm is run with ε = δ
2ρ2

and T =
⌈
2ρ2 logn

δ2

⌉
, then either it outputs

a δ-feasible x, or outputs correctly that the LP is infeasible.

Proof. Suppose for all iterations t, the point x(t) is not δ-feasible. Then we want to prove that the
LP is indeed infeasible.

Suppose for the sake of contradiction that the LP is feasible, i.e. there is a distribution x? such
that for all j, we have aj · x? ≥ 0. We now use the normalization factor Φt as a potential function.
We have

Φ(t+1) =
∑
i

w
(t+1)
i

=
∑
i

w
(t)
i exp(−εaij(t))

≤
∑
i

w
(t)
i (1− εaij(t) + ε2aij(t)) ∵ exp(x) ≤ 1 + x+ x2 for |x| ≤ 1

≤ Φ(t)(1− εaj(t) · x
(t) + ε2ρ2) ∵ |aij(t) | ≤ ρ

≤ Φ(t) exp(−εaj(t) · x
(t) + ε2ρ2) ∵ exp(x) ≥ 1 + x

< Φ(t) exp(−εδ/2). ∵ aj(t) · x
(t) > δ and ε2ρ2 = εδ/2

Thus, by induction, after T rounds, we have

Φ(T+1) < Φ(1) exp(−εδT/2) = n exp(−εδT/2) ≤ 1, (1)

for T =
⌈
logn
εδ

⌉
=
⌈
2ρ2 logn

δ2

⌉
. Since for any i, we have

Φ(T+1) ≥ w(T+1)
i = exp

(
−ε

T∑
t=1

aij(t)

)
,

so from (1) we get that
∑T

t=1 aij(t) > 0 for all i. But we assumed that aj ·x? ≤ 0 for all j, implying
that

0 ≥
T∑
t=1

aj(t) · x
? =

n∑
i=1

x?i ·
T∑
t=1

aij(t) > 0,

a contradiction. Hence, our assumption is wrong, and the LP is indeed infeasible.

3.2 Making it primal-dual.

It can be easily seen that the ViolationChecker doesn’t necessarily need to identify a single
violated constraint. Rather, the algorithm works just as well if ViolationChecker outputs a
distribution y over the constraints such that the expected constraint is violated, i.e.

∑
j yjaj ·x(t) >

δ. Now, the yj variables can be seen to be dual variables for the LP. Thus, the choice of the primal
variables, x(t), induces a choice for the dual variables – namely, dual variables which certify that
x(t) is not δ-feasible – and these dual variables in turn are used to update the primal variables. In
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this sense, the algorithm can be thought of as primal-dual. In several applications, it is possible to
obtain running time speedups by exploiting the combinatorial structure of the problem and setting
the dual variables cleverly (say, in a way that guarantees that the expected constraint is sparse,
leading to fast updates).

4 Matrix Multiplicative Weights for SDP

We now turn to the SDP. Again, we are looking for a δ-feasible solution, i.e. a density matrix X
such that for all j, Aj • X ≤ δ. As before, we assume we have access to an algorithm, Viola-
tionChecker, that given a density matrix X, efficiently determines if there is any constraint j
such that Aj •X > δ.

We now give the Matrix MW algorithm. It is parameterized by ε ∈ (0, 1) and an integer T > 0.

Matrix MW

1. Initialize a weight matrix W(1) to I.

2. For t = 1, 2, . . . , T :

(a) Let X(t) = W(t)/Φ(t), where Φt is the normalization constant to make X(t+1) a density
matrix.

(b) Send X(t) to ViolationChecker.

(c) If ViolationChecker reports that X(t) is δ-feasible, stop and output X(t).

(d) Else, let Aj •X(t) > δ be a constraint violated by X(t) found by ViolationChecker.
Update:

W(t+1) = exp(−ε
∑t

τ=1Aj).

3. Output that the SDP is infeasible.

Note that if all the matrices involved in the SDP were diagonal, then this algorithm exactly reduces
to the MW algorithm for LP given earlier. This algorithm can also be made primal-dual by having
the ViolationChecker find a distribution y over the constraints such the expected constraint is
violated by at least δ, i.e.

∑
j Aj •X(t) > δ.

4.1 Analysis

For the analysis, we need to define a parameter, ρ, called the width of the SDP:

Definition 3. Define ρ = maxj ‖Aj‖.

Theorem 4. If the MW algorithm is run with ε = δ
2ρ2

and T =
⌈
2ρ2 logn

δ2

⌉
, then either it outputs

a δ-feasible X, or outputs correctly that the SDP is infeasible.

Proof. The proof is on the same lines as that of Theorem 2, using Tr(Φ(t)) as a potential function.
The analysis needs to use the following two inequalities:
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1. Golden-Thompson inequality [Gol65, Tho65]: for any two symmetric matrices A and B of
like order, we have

Tr(exp(A + B)) ≤ Tr(exp(A))Tr(exp(B)).

2. For any matrix X with ‖X‖ ≤ 1, we have

exp(X) � I + X + X2.

5 Applying Matrix MW in Approximation Algorithms

Approximation Algorithms via SDP relaxations. The usual recipe for designing approxi-
mation algorithms based on SDP is the following.

1. Start with an NP-hard combinatorial optimization problem (say MaxCut). Formulate it as
an equivalent quadratic program.

2. Replace all products between scalar variables in the quadratic program by inner products
between vector variables (i.e., replace xixj by vi · vj). The result is an SDP.

3. Solve the SDP to (near-)optimality using a standard SDP solver such as an Interior Point
algorithm. This gives a positive semidefinite matrix X as the optimal solution.

4. Decompose X via the Cholesky factorization into vectors v1,v2, . . . ,vn such that Xij = vi ·vj .

5. Run some geometric rounding algorithm (such as hyperplane rounding in the case of MaxCut)
to obtain an approximately-optimum integral solution to the original problem.

Using Matrix MW in Approximation Algorithms. To use the Matrix MW algorithm to
speed up such an approximation algorithm, we replace steps 3, 4, and 5 of the above with the
Matrix MW algorithm. Here is the general recipe:

1. Start with an NP-hard combinatorial optimization problem. Formulate it as an equivalent
quadratic program.

2. Replace all products between scalar variables in the quadratic program by inner products
between vector variables (i.e., replace xixj by vi · vj). The result is an SDP.

3. Run the Matrix MW algorithm on the SDP. In each round:

(a) Obtain the candidate solution X(t). Note that it is positive semidefinite. Decompose

X(t) via the Cholesky factorization into vectors v1,v2, . . . ,vn such that X
(t)
ij = vi · vj .

(b) Run the geometric rounding algorithm on the vectors v1,v2, . . . ,vn.

(c) The rounding algorithm may or not run on the vectors, because X(t) may not satisfy
all the constraints of the SDP. If it succeeds, usually this produces the approximately-
optimal integral solution to the original problem.
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(d) Else, identify which constraints of the SDP were violated by X(t) that caused the round-
ing algorithm to fail. Use these constraints to generate feedback in terms of a distribution
y on the constraints for the Matrix MW algorithm.

The performance benefit to this approach comes from two sources: (a) the number of iterations
in the Matrix MW algorithm depends only logarithmically in the dimension n, and (b) the use of
the rounding algorithm directly on infeasible solutions gives a way to identify violated constraints
quickly.

Most of the work in applying this method is in understand how the rounding algorithm works and
tweaking it so that it can be used as the ViolationChecker.

6 Illustration: Approximating Balanced Separator

In this section, we give a high-level overview of applying this method to approximate the Balanced
Separator problem. In this problem, we are given a graph G = (V,E) (for simplicity, assume that
the edges are unweighted) with n = |V |. For a given fraction c < 1/2, a c-balanced cut in the graph
S ⊆ V, S̄ = V \S, is one that has at least cn nodes in both S and S̄. The objective of the Balanced
Separator problem is to find the c-balanced cut of minimum capacity.

We start by writing an SDP for this problem. We follow the general recipe given above, and give
the quadratic programming formulation for the problem. For every node i, we have a variable
xi ∈ {−1, 1}. The interpretation of the solution is that if xi = 1, then i ∈ S, otherwise, i ∈ S̄. For
a pair of nodes i 6= j, consider the quantity 1

4(xi−xj)2. This is equal to 0 if i and j lie on the same
side of the cut S, S̄, and 1 otherwise. The quadratic program can then be written as follows:

min
∑

(i,j)∈E

1

4
(xi − xj)2

x2i = 1∑
i,j

1

4
(xi − xj)2 ≥ c(1− c)n2

∀i, j, k : (xi − xj)2 + (xj − xk)2 ≥ (xi − xk)2

The objective minimizes the number of edges cut, the first constraint ensures that xi ∈ {−1, 1},
the second constraint above ensures that the solution is c-balanced, and the third constraints are
triangle inequality constraints that are satisfied for any −1, 1 solution.

To write this as an SDP, we replace all products between scalars by inner products between vectors.
We get the following SDP:

min
∑

(i,j)∈E

1

4
‖vi − vj‖2

‖vi‖2 = 1∑
i,j

1

4
‖vi − vj‖2 ≥ c(1− c)n2

∀i, j, k : ‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2
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Now, to apply the Matrix MW algorithm, we convert the problem into a feasibility problem by
replacing the objective by the constraint 1

4‖vi − vj‖2 ≤ α, where α is a binary search parameter.
We get the following feasibility problem:∑

(i,j)∈E

1

4
‖vi − vj‖2 ≤ α

‖vi‖2 = 1∑
i,j

1

4
‖vi − vj‖2 ≥ c(1− c)n2

∀i, j, k : ‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2

In each iteration of the Matrix MW algorithm, we are given a candidate solution X which is positive
semidefinite, and assume that it is scaled so that its trace equals n. Now we need to implement the
ViolationChecker for this problem. It is easy to check the second and third constraints above,
so we omit that part, and assume that those constraints are satisfied. The difficult part is to check
the triangle inequality constraints, since they are so numerous: they are O(n3) in number. We
reduce the problem of checking the first constraint and the triangle inequality constraints to the
following multicommodity flow problem:

Flow Problem: Find a multicommodity flow (i.e. an assignment of positive numbers fp to every
path p in the graph) such that

1. For any node, the total flow on all paths starting from the node is at most d = Õ(α/n) (degree
constraints),

2. For any edge, the total flow on all paths using the edge is at most 1 (capacity constraints),

3. If fij is the total flow on all paths from i to j, then∑
ij

1

4
fij‖vi − vj‖2 > α.

The degree constraints are useful in bounding the width of the problem and we will not discuss them
further. If we find such a multicommodity flow (assigning flow fp to path p), then we conclude that
either the first constraint or the triangle inequality constraints are violated. To show this, assume
for the sake of contradiction that the first and triangle inequality constraints are satisfied. Then
for any path p connecting nodes i, j, the triangle inequalities imply the path constraint∑

Edge (k,`)∈p

‖vk − v`‖2 ≥ ‖vi − vj‖2.

Taking a weighted combination of such path inequalities with weight fp for path p, we get∑
p

∑
Edge (k,`)∈p

fp‖vk − v`‖2 ≥
∑
p

fp‖vi − vj‖2 =
∑
ij

fij‖vi − vj‖2 > 4α.
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On the other hand, using the capacity constraints we get∑
p

∑
Edge (k,`)∈p

fp‖vk − v`‖2 =
∑

(i,j)∈E

∑
p3(i,j)

fp‖vi − vj‖2 ≤
∑

(i,j)∈E

‖vi − vj‖2 ≤ 4α,

a contradiction.

Thus, finding a multicommodity flow of the specified type is essentially equivalent to showing a
combination of constraints that is violated. For brevity we omit details of how this feedback is used
in the Matrix MW algorithm, and instead specify how to obtain the required multicommodity flow
to obtain O(log n) and O(

√
log n) approximation factors.

6.1 Obtaining an O(log n) approximation

Recall that we are assuming that the second and third inequalities are satisfied. We run the following
rounding algorithm on the vectors vi: take a random unit vector u. Let L = {i : vi · u < −σ},
and let R = {i : vi ·u > σ}, for σ = Θ( 1

logn). The fact that the third constraint is satisfied implies
that both L and R are of size Ω(n) with constant probability. Now connect all nodes in L to a
single source with edges of capacity d, and all nodes in R to a single sink with edges of capacity d.
Run a single-commodity max-flow computation from the source to the sink.

We can prove the following theorem (see [AK07] for details):

Theorem 5. If the max-flow has value less than O(log(n)·α), then the min-cut found in the process
is an O(log(n)) approximation to the minimum c-balanced separator. Otherwise, the max-flow gives
the required multicommodity flow (by ignoring the flow on the source and sink edges).

6.2 Obtaining an O(
√
log n) approximation

To obtain an O(
√

log n) approximation, we consider a multicommodity flow problem in the graph,
where the source-sink pairs are obtained by choosing all pairs i, j such that ‖vi−vj‖2 ≥ s, for some
small constant s. To ensure the degree constraints hold, we connect each such pair to fictitious
source and sink nodes with edges of capacity d. Then we compute the maximum multicommodity
flow in the graph using the algorithm of Garg and Könemann.

We can prove the following theorem (see [AK07] for details):

Theorem 6. If the maximum multicommodity flow has value less than O(α), then dual variables
for the flow problem found in the process can be used to find an O(

√
log(n)) approximation to

the minimum c-balanced separator. Otherwise, the multicommodity flow is the required flow (by
ignoring the flow on the fictitious source and sink edges).
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