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The Steiner Tree Problem

Def (Steiner tree) Given an undirected graphil = (V, E') with
edge costs : £ — R.(, and a set oferminal nodesk C V,
find the treeS spanningR? of minimum coste(S) == > . s c(e).
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Known Results
Hardness:

e NP-hard even for edge costs{m, 2} [Bern&Plassmann’89]
e N0 —-apx unless P=NP [Chlebik&Chlebikova’02]
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e N0 —-apx unless P=NP [Chlebik&Chlebikova’02]

2-apx [minimum spanning tree heuristic]
1.83-apx [Zelikovsky'93]

1.67-apx [Promel&Steger’97]

1.65-apx [Karpinski&Zelikovsky'97]
1.60-apx [Hougardy&Promel’99]
1.55-apx [Robins&Zelikovsky’00]

Integrality gap:
o < 2[Goemans&Williamson'95, Jain’98]
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Our Resultsand Technigques

Thr There is an (LP-based) determinishict + ¢ < 1.39

approximation for the Steiner tree problem
e Here we show an expectéd + ¢ apx

Thr There is an LP-relaxation for Steiner tree with integrality

gap at most + In(3)/2 < 1.55
e Here we showl +1n2 < 1.7
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Our Resultsand Technigques

Thr There is an (LP-based) determinishict + ¢ < 1.39

approximation for the Steiner tree problem
e Here we show an expectéd + ¢ apx

Thr There is an LP-relaxation for Steiner tree with integrality

gap at most + In(3)/2 < 1.55
e Here we showl +1n2 < 1.7

e Directed-Component Cut Relaxation

o bidirected cut relaxation
¢ k-components

e |terative Randomized Rounding

¢ randomized rounding
¢ Iterative rounding
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Directed-Component
Cut Relaxation



Bidirected Cut Relaxation
e We select aoot r € R and bi-direct the edges. Then

min Z c(e)ze (BCR)
ecl
d >l YUCV —r,UNR+#(
ecdt(U)
Ze > 0 Vee E

e T (U)={abe E:acUandb¢ U}
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Bidirected Cut Relaxation
e We select aoot r € R and bi-direct the edges. Then

min Z c(e)ze (BCR)
ecl
d >l YUCV —r,UNR+#(
ecdt(U)
Ze > 0 Vee E

e T (U)={abe E:acUandb¢ U}

Thr [Edmonds 67] For R = V', BCR is integral
the undirected version has integrality gagven forR =V

—n. 6/



Components

Def A component of a Steiner tree is a maximal subtree whose
terminals coincide with its leaves

e A k-component is a component with at mogtterminals

e A Steiner tree made df-components ik-restricted.
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Components

Def A component of a Steiner tree is a maximal subtree whose
terminals coincide with its leaves

e A k-component is a component with at mogtterminals

e A Steiner tree made df-components ik-restricted.

Thr[Borchers& Du’'97] If opt;, andopt are the costs of an
optimal k-restricted Steiner tree and an optimal Steiner tree,
respectively, then

1
tr < (1 t
o = (14 g )

—-n. 7/



Directing Components

e Direct the edges of an optimal Steiner tree towards a root
terminalr € R. This way we obtaimirected components
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Directing Components

e Direct the edges of an optimal Steiner tree towards a root
terminalr € R. This way we obtaimirected components

T

O
T C T [ sources(C)
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Directed-component Cut Relaxation

minz c(Chzxe (DCR)
cec
d  me>1 YUCR—rU+0
cesg (U)
rxo > 0 VO e C

e (C Is the set of candidate directed components
e 0 (U)={C €C: sources(C)NU # () andsink(C) ¢ U}
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Directed-component Cut Relaxation

minz c(Chzxe (DCR)
ceC
d  me>1 YUCR—r,U=0(
cesg (U)
rxo > 0 VO e C

e (C Is the set of candidate directed components
e 0 (U)={C €C: sources(C)NU # () andsink(C) ¢ U}

LemA (1 + ¢) approximation of the optimal fractional solution
opt! to DCR can be computed in polynomial time

L em The cost of a minimum terminal spanning treei< opt/
Lem DCR is strictly stronger than BCR
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Iterative
Randomized Rounding



|ter ative Randomized Rounding

e Solve an LP-relaxation for the problem

e Sample one variable with probability proportional to its
fractional value, and round it

e Iterate the process on the residual problem
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|ter ative Randomized Rounding

e Solve an LP-relaxation for the problem

e Sample one variable with probability proportional to its
fractional value, and round it

e Iterate the process on the residual problem

In randomized rounding variables are rounded randomly
and (typically) simultaneously

In iterative rounding variables are rounded
deterministically and (typically) one at a time
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Algorithm IRR

o Fort=1,2,...
o Compute g1 + ¢)-apx solutionz’ for DCR
o Sample a componeit = C* with probability
P =T/ ZDeC D
o ContractC* and update DCR consequently

o If there is only one terminal, output the sampled
components
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Algorithm IRR

o Fort=1,2,...
o Compute g1 + ¢)-apx solutionz’ for DCR
o Sample a componeit = C* with probability
P =T/ ZDeC D
o ContractC* and update DCR consequently

o If there is only one terminal, output the sampled
components

By adding a dummy component in the root, we can assume
w.l.o.g. thatM := >, _. «f, is fixed for allt
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Bridge Lemma



Bridges

Def Given a Steiner tre§ and R’ C R, thebridgesbrs .(R') of
S w.r.t. R’ (and edge costg are the edges & which do not
belong to the minimum spanning treeldf.S) after the

contraction ofRR’

L]
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8 [] 10 B R
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Bridges

Def Given a Steiner tre§ and R’ C R, thebridgesbrs .(R') of
S w.r.t. R’ (and edge costg are the edges & which do not
belong to the minimum spanning treeldf.S) after the

contraction ofRR’

— 3
8 [] L1 10 m =
1 — b’l“s}c(R)
[ O ]
2 9 2

The most expensive edge on a path between two gray nodes

IS a bridge
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Bridges

Def Given a Steiner tre§ and R’ C R, thebridgesbrs .(R') of
S w.r.t. R’ (and edge costg are the edges & which do not
belong to the minimum spanning treeldf.S) after the

contraction ofRR’

— 3
8 [] L1 10 m =
1 — st,c(R)
[ O ]
2 9 2

Letbrg(R')=brg.(R'), brs(R'):=c(brs(R’)) and
brs(C):=brs(RNC).
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Bridges

L em For any Steiner tre® on R, brg(R)
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TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

—n. 16/



TheBridge Lemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

g []

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

. 8 10

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

- o] 10 .

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityr-, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

- o] 10 .

—n. 16/



TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

For everyC € C, with capacityx, construct a directed
terminal spanning treg&- on R N C, with capacityz- and
edge weightsu, as follows

- o] 10 .

Y- supports the same flow to the root@sv.r.t. terminals
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Replace each componentwith the corresponding
(cumulating capacities)
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TheBridgeLemma
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tree on a directed graph with = R and edge costs
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TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR,» .. z¢ - brp(C) > (T

The new terminal spanning trééis more expensive than the
original terminal spanning trég by the cycle-rule
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TheBridgeLemma

Lem (Bridge Lemma) Forany terminal spanning tre€ andany
feasible fractional solutiom to DCR, > .. z¢ - brp(C) > ¢(T)

Summarizing

g reo - brp(C E ro-w(Yo) > w(F) >cT)
v
cec CEC w-cost of
NV integral
w-cost of terminal
fractional spanning tree
terminal

spanning tree
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A First Bound

Thr Algorithm IRR computes a solution of expected cost
< (1+1In2+¢)opt!
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A First Bound

Thr Algorithm IRR computes a solution of expected cost
< (1+1In2+¢)opt!

Blapr] = Y7 Ele(@)] < 30 E[Y. 20e(0)] < 1537 Blopt™]

t>1 t>1 C t>1
M 1n 2
].—|_€ f 1"‘5 t
< LS o+ LEE S Bl
t=1 t>M In 2

e T"is a minimum terminal spanning tree at step
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Blapr] = Y7 Ele(@)] < 30 E[Y. 20e(0)] < 1537 Blopt™]

t>1 t>1 C t>1
M In 2
]_—|—€ f 1"‘5 t
<LEEN ot 1 LSS o)
t=1 t>M In 2

Lem For anyt, E[c(T")] < (1 — =)e(TY)

t

E[e(T"™)] < o(T") = E[br(C)] = c(T") = > xﬁcbrw (C)

Bridge Lem 1
< C(Tt) — MC(Tt)
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A First Bound

Thr Algorithm IRR computes a solution of expected cost
< (1+1In2+¢)opt!

Blapr] = Y7 Ele(@)] < 30 E[Y. 20e(0)] < 1537 Blopt™]

t>1 t>1 C t>1
M 1In 2
]_—|—€ f 1"‘5 t
< 7 Zopt +— Z Elc(T")]
t=1 t>M In 2
s 1 1 t—1
< opt’ (1 In2 + 2opt’ (1 — (1- =
< opt! (1+¢)In2 +2opt’ ( +€)t>;l2M( M)

< (1+¢e)(In2+2e ™2 opt!
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A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5+¢)opt
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A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5+¢)opt

This bound might not hold w.r.tpt/
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A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5+¢)opt

Lem For anyt, E[c(S'™)] < (1 — 557)c(SY)

Construct a terminal spanning trég’, w) w.r.t. S* and all its
terminalsR! = RN S* as in the proof of the bridge lemma.

Letb(e) € S* be the bridge associateddae Y.

€1
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A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5 +¢) opt

Lem For anyt, E[c(S'™)] < (1 — 557)c(SY)

S":=5"-{b(e) € S"|e € bryt (C")} is a feasible Steiner tree
at stept + 1

4 €2
b(el) €1
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A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5+¢)opt

Lem For anyt, E[c(S'™)] < (1 — 557)c(SY)

Ele(S8")] < Ele(8)] = e(S°) — Elc({ble) € 8" | e € bry:  (C)})]

= ¢(S") — E[bry+ o (C")]

= c(5") — % Zangryt,w(C’)
C

Bridge Lem . 1 .
< oS) - qpw)
= ¢(S") — +-brst o(RY)

t
< (8h) 1 ¢(SY)
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A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5+¢)opt

Lem For anyt, E[c(S'™)] < (1 — 557)c(SY)

Ele(S8")] < Ele(8)] = e(S°) — Elc({ble) € 8" | e € bry:  (C)})]

= ¢(S") — E[bry+ o (C")]

= c(5") — % Zx%bryt’w(C)
C

Bridge Lem . 1 .
< oS) - qpw)
= ¢(S") — +-brst o(RY)

t
S C(St) _ %C(g )

—n. 24/



A Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (1.5+¢)opt

Blapa] = Y Fle(C)] < ST B[S o) < =237 Blopt™
<1te 3" Ele(SY) + L+e N Ele(T)
< (S fopt) (3 (- )T Y 20— )

< (1+¢)(2—2e mW/2Z 4 9oy Loy
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An Even Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (In4+¢)opt
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An Even Better Bound

Thr Algorithm IRR computes a solution of expected cost
< (In4+¢)opt

Eache € S survives in expectatioi/ - In 4 rounds
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Derandomization
Thr There is dn 4 4 ¢ deterministic approximation algorithm
for Steiner tree

We define a phase-based randomized algorithm, iyith
phases

At each phase, we sample a proper number of components
(without updating the LP)

It Is sufficient to guarantee that, at each phase:
Each component is sampled with probabilitys)x?,
Each edge of the witness tr&é is marked with probability
Qe)

This can be done by using ony(log n) random bits per
phase
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Open Problems

The bestl .39 (and evenl.5) bound is w.r.t. the optimal
Integral solution. Does is hold w.r.t. the fractional one?
Other applications of iterative randomized rounding?

Prize-collecting Steiner tree

K-MST

Single-Sink Rent-or-Buy
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