
An Improved LP-Based
Approximation for Steiner Tree

Fabrizio Grandoni

Tor Vergata Rome
grandoni@disp.uniroma2.it

Joint work with

J. Byrka, T. Rothvoß, L. Sanit à

– p. 1/29

The Steiner Tree Problem
Def (Steiner tree) Given an undirected graphG = (V,E) with
edge costsc : E → R>0, and a set ofterminal nodesR ⊆ V ,
find the treeS spanningR of minimum costc(S) :=

∑

e∈S c(e).

– p. 2/29

The Steiner Tree Problem
Def (Steiner tree) Given an undirected graphG = (V,E) with
edge costsc : E → R>0, and a set ofterminal nodesR ⊆ V ,
find the treeS spanningR of minimum costc(S) :=

∑

e∈S c(e).

1 2
4

3

5

2

4

2 1

2

3

terminal

18

20

15

11

3

– p. 2/29

The Steiner Tree Problem
Def (Steiner tree) Given an undirected graphG = (V,E) with
edge costsc : E → R>0, and a set ofterminal nodesR ⊆ V ,
find the treeS spanningR of minimum costc(S) :=

∑

e∈S c(e).

terminal

18

20

15

11

3

1 2
4

3

5

2

4

2 1

2

3

terminal

– p. 2/29

Known Results
Hardness:

• NP-hard even for edge costs in{1, 2} [Bern&Plassmann’89]
• no< 96

95
-apx unless P=NP [Chlebik&Chlebikova’02]

– p. 3/29

Known Results
Hardness:

• NP-hard even for edge costs in{1, 2} [Bern&Plassmann’89]
• no< 96

95
-apx unless P=NP [Chlebik&Chlebikova’02]

Approximation:

• 2-apx [minimum spanning tree heuristic]
• 1.83-apx [Zelikovsky’93]
• 1.67-apx [Prömel&Steger’97]
• 1.65-apx [Karpinski&Zelikovsky’97]
• 1.60-apx [Hougardy&Prömel’99]
• 1.55-apx [Robins&Zelikovsky’00]

– p. 3/29

Known Results
Hardness:

• NP-hard even for edge costs in{1, 2} [Bern&Plassmann’89]
• no< 96

95
-apx unless P=NP [Chlebik&Chlebikova’02]

Approximation:

• 2-apx [minimum spanning tree heuristic]
• 1.83-apx [Zelikovsky’93]
• 1.67-apx [Prömel&Steger’97]
• 1.65-apx [Karpinski&Zelikovsky’97]
• 1.60-apx [Hougardy&Prömel’99]
• 1.55-apx [Robins&Zelikovsky’00]

Integrality gap:

• ≤ 2 [Goemans&Williamson’95, Jain’98]

– p. 3/29

Our Results and Techniques

Thr There is an (LP-based) deterministicln 4 + ε < 1.39

approximation for the Steiner tree problem
• Here we show an expected1.5 + ε apx

Thr There is an LP-relaxation for Steiner tree with integrality
gap at most1 + ln(3)/2 < 1.55

• Here we show1 + ln 2 < 1.7

– p. 4/29

Our Results and Techniques

Thr There is an (LP-based) deterministicln 4 + ε < 1.39

approximation for the Steiner tree problem
• Here we show an expected1.5 + ε apx

Thr There is an LP-relaxation for Steiner tree with integrality
gap at most1 + ln(3)/2 < 1.55

• Here we show1 + ln 2 < 1.7

• Directed-Component Cut Relaxation

⋄ bidirected cut relaxation
⋄ k-components

• Iterative Randomized Rounding

⋄ randomized rounding
⋄ iterative rounding

– p. 4/29

Directed-Component

Cut Relaxation

– p. 5/29

Bidirected Cut Relaxation
• We select aroot r ∈ R and bi-direct the edges. Then

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V − r, U ∩ R 6= ∅

ze ≥ 0 ∀e ∈ E

• δ+(U) = {ab ∈ E : a ∈ U andb /∈ U}

– p. 6/29

Bidirected Cut Relaxation
• We select aroot r ∈ R and bi-direct the edges. Then

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V − r, U ∩ R 6= ∅

ze ≥ 0 ∀e ∈ E

• δ+(U) = {ab ∈ E : a ∈ U andb /∈ U}

Thr [Edmonds’67] ForR = V , BCR is integral

Rem the undirected version has integrality gap2 even forR = V

– p. 6/29

Components

Def A component of a Steiner tree is a maximal subtree whose
terminals coincide with its leaves

• A k-component is a component with at mostk terminals

• A Steiner tree made ofk-components isk-restricted.

– p. 7/29

Components

Def A component of a Steiner tree is a maximal subtree whose
terminals coincide with its leaves

• A k-component is a component with at mostk terminals

• A Steiner tree made ofk-components isk-restricted.

Thr [Borchers & Du’97] If optk andopt are the costs of an
optimalk-restricted Steiner tree and an optimal Steiner tree,
respectively, then

optk ≤

(

1 +
1

⌊log2 k⌋

)

opt

– p. 7/29

Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components

– p. 8/29

Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components

– p. 8/29

Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components

– p. 8/29

Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components

– p. 8/29

Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components

C

sink(C)

sources(C)

– p. 8/29

Directed-component Cut Relaxation

min
∑

C∈C

c(C)xC (DCR)

∑

C∈δ+
C

(U)

xC ≥ 1 ∀U ⊆ R − r, U 6= ∅

xC ≥ 0 ∀C ∈ C

• C is the set of candidate directed components

• δ+
C
(U) = {C ∈ C : sources(C) ∩ U 6= ∅ andsink(C) /∈ U}

– p. 9/29

Directed-component Cut Relaxation

min
∑

C∈C

c(C)xC (DCR)

∑

C∈δ+
C

(U)

xC ≥ 1 ∀U ⊆ R − r, U 6= ∅

xC ≥ 0 ∀C ∈ C

• C is the set of candidate directed components

• δ+
C
(U) = {C ∈ C : sources(C) ∩ U 6= ∅ andsink(C) /∈ U}

Lem A (1 + ε) approximation of the optimal fractional solution
optf to DCR can be computed in polynomial time

Lem The cost of a minimum terminal spanning tree is≤ 2 optf

Lem DCR is strictly stronger than BCR
– p. 9/29

Iterative

Randomized Rounding

– p. 10/29

Iterative Randomized Rounding

• Solve an LP-relaxation for the problem

• Sample one variable with probability proportional to its
fractional value, and round it

• Iterate the process on the residual problem

– p. 11/29

Iterative Randomized Rounding

• Solve an LP-relaxation for the problem

• Sample one variable with probability proportional to its
fractional value, and round it

• Iterate the process on the residual problem

Rem In randomized rounding variables are rounded randomly
and (typically) simultaneously

Rem In iterative rounding variables are rounded
deterministically and (typically) one at a time

– p. 11/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

0.5

0.5

0.5

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

C1

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

1

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

C2

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

– p. 12/29

Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

Rem By adding a dummy component in the root, we can assume
w.l.o.g. thatM :=

∑

D∈C
xt

D is fixed for allt

– p. 12/29

Bridge Lemma

– p. 13/29

Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

10
1

S

R′

– p. 14/29

Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

10
1

0 0

0 0
S

R′

– p. 14/29

Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

1

0 0

0 0
S

R′

– p. 14/29

Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

101
S

R′

brS,c(R
′)

– p. 14/29

Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

101
S

R′

brS,c(R
′)

Rem The most expensive edge on a path between two gray nodes
is a bridge

– p. 14/29

Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

101
S

R′

brS,c(R
′)

Rem Let brS(R′)=brS,c(R
′), brS(R′):=c(brS(R′)) and

brS(C):=brS(R ∩ C).
– p. 14/29

Bridges

Lem For any Steiner treeS onR, brS(R) ≥ 1
2
c(S)

1
2 4

3

1 5

– p. 15/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

8

1

10
1

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

8

1

101

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

8

1

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

8

1

8

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

10

8

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

10

8 10

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

1

8 10

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

1

8 10

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

1

8 10

– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

1

8 10

Rem YC supports the same flow to the root asC w.r.t. terminals
– p. 16/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3 2

4

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3 2

4

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3 2

4

• Replace each componentC with the correspondingYC

(cumulating capacities)

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3

4

3 2

4

• Replace each componentC with the correspondingYC

(cumulating capacities)

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3

4
4

3

3 2

4

• Replace each componentC with the correspondingYC

(cumulating capacities)

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3

4
4

3

2

4

3 2

4

• Replace each componentC with the correspondingYC

(cumulating capacities)

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3

4
4

3

2

4

• We obtain a feasible fractional directed terminal spanning
tree on a directed graph withV = R and edge costsw

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3

4
4

3

2

4

3
2

4

• We obtain a feasible fractional directed terminal spanning
tree on a directed graph withV = R and edge costsw

⇒ By Edmod’s thr there is a cheaper (w.r.t.w) integral directed
terminal spanning treeF

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3
2

4

• We obtain a feasible fractional directed terminal spanning
tree on a directed graph withV = R and edge costsw

⇒ By Edmod’s thr there is a cheaper (w.r.t.w) integral directed
terminal spanning treeF

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

3
2

4

3 2

4

• The new terminal spanning treeF is more expensive than the
original terminal spanning treeT by the cycle-rule

– p. 17/29

The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T)

• Summarizing
∑

C∈C

xC · brT (C) =
∑

C∈C

xC · w(YC)

︸ ︷︷ ︸

w-cost of
fractional
terminal

spanning tree

≥ w(F)
︸ ︷︷ ︸

w-cost of
integral
terminal

spanning tree

≥ c(T)

– p. 18/29

Approximation Factor

– p. 19/29

A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

– p. 20/29

A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

Cor The integrality gap of DCR is at most1 + ln 2 < 1.7

– p. 20/29

A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

• T t is a minimum terminal spanning tree at stept

– p. 21/29

A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

Lem For anyt, E[c(T t+1)] ≤ (1 − 1
M

)c(T t)

E[c(T t+1)] ≤ c(T t) − E[brT t(Ct)] = c(T t) −
X

C

xt
C

M
brT t(C)

Bridge Lem
≤ c(T t) −

1

M
c(T t)

– p. 21/29

A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

Lem For anyt, E[c(T t+1)] ≤ (1 − 1
M

)c(T t)

E[c(T t+1)] ≤ c(T t) − E[brT t(Ct)] = c(T t) −
X

C

xt
C

M
brT t(C)

Bridge Lem
≤ c(T t) −

1

M
c(T t)

Cor E[c(T t)] ≤ (1 − 1
M

)t−1c(T 1) ≤ (1 − 1
M

)t−12 optf

– p. 21/29

A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

≤ opt
f (1 + ε) ln 2 + 2 opt

f (1 + ε)
X

t>M ln 2

1

M

„

1 −
1

M

«t−1

≤ (1 + ε)(ln 2 + 2e
− ln 2) · opt

f

– p. 21/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Rem This bound might not hold w.r.t.optf

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 4
X

t=1

E[c(St)] +
1 + ε

M

X

t>M ln 4

E[c(T t)]

• St is a minimum Steiner tree at stept

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• Construct a terminal spanning tree(Y t, w) w.r.t. St and all its
terminalsRt = R ∩ St as in the proof of the bridge lemma.

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• Construct a terminal spanning tree(Y t, w) w.r.t. St and all its
terminalsRt = R ∩ St as in the proof of the bridge lemma.

• Let b(e) ∈ St be the bridge associated toe ∈ Y t.

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• Construct a terminal spanning tree(Y t, w) w.r.t. St and all its
terminalsRt = R ∩ St as in the proof of the bridge lemma.

• Let b(e) ∈ St be the bridge associated toe ∈ Y t.

3

b(e1)

2

4

b(e2)

3

e1

4
e2

– p. 22/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• S′:=St-{b(e) ∈ St | e ∈ brY t,w(Ct)} is a feasible Steiner tree
at stept + 1

3

b(e1)

2

4

b(e2)

3

e1

4
e2

– p. 23/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• S′:=St-{b(e) ∈ St | e ∈ brY t,w(Ct)} is a feasible Steiner tree
at stept + 1

3

b(e1)

2

4

b(e2)

3

e1

4
e2

– p. 23/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• S′:=St-{b(e) ∈ St | e ∈ brY t,w(Ct)} is a feasible Steiner tree
at stept + 1

3

b(e1)

2

4

b(e2) 4
e2

– p. 23/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

• S′:=St-{b(e) ∈ St | e ∈ brY t,w(Ct)} is a feasible Steiner tree
at stept + 1

2

4

b(e2) 4
e2

– p. 23/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

E[c(St+1)] ≤ E[c(S′)] = c(St) − E[c({b(e) ∈ S
t | e ∈ brY t,w(Ct)})]

= c(St) − E[brY t,w(Ct)]

= c(St) −
1

M

X

C

x
t
CbrY t,w(C)

Bridge Lem
≤ c(St) −

1

M
w(Y t)

= c(St) −
1

M
brSt,c(R

t)

≤ c(St) −
1

M

c(St)

2

– p. 24/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

E[c(St+1)] ≤ E[c(S′)] = c(St) − E[c({b(e) ∈ S
t | e ∈ brY t,w(Ct)})]

= c(St) − E[brY t,w(Ct)]

= c(St) −
1

M

X

C

x
t
CbrY t,w(C)

Bridge Lem
≤ c(St) −

1

M
w(Y t)

= c(St) −
1

M
brSt,c(R

t)

≤ c(St) −
1

M

c(St)

2

Cor E[c(St)] ≤ (1 − 1
2M

)t−1c(S1) = (1 − 1
2M

)t−1opt

– p. 24/29

A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

j

xt
j

M
c(Ct

j)] ≤
1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 4
X

t=1

E[c(St)] +
1 + ε

M

X

t>M ln 4

E[c(T t)]

≤ (
1 + ε

M
opt) · (

M ln 4
X

t=1

(1 −
1

2M
)t−1 +

X

t>M ln 4

2(1 −
1

M
)t−1)

≤ (1 + ε)(2 − 2e
− ln(4)/2 + 2e

− ln(4)) · opt

– p. 25/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• We define a random terminal spanning treeW (witness tree)

– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

0

00

0

• We define a random terminal spanning treeW (witness tree)

– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• We define a random terminal spanning treeW (witness tree)

– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• We associate to eache in the Steiner treeS the edgesW (e) of
W such that the corresponding path inS containse

• Observe that|W (e)| is 1, 2. . . with probability 1
2
, 1

4
, . . .

– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• We associate to eache in the Steiner treeS the edgesW (e) of
W such that the corresponding path inS containse

• Observe that|W (e)| is 1, 2. . . with probability 1
2
, 1

4
, . . .

– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2

3

1 5

• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
– p. 26/29

An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2

3

1 5

• Eache ∈ S survives in expectationM · ln 4 rounds

– p. 26/29

Derandomization
Thr There is aln 4 + ε deterministic approximation algorithm
for Steiner tree

– p. 27/29

Derandomization
Thr There is aln 4 + ε deterministic approximation algorithm
for Steiner tree

• We define a phase-based randomized algorithm, with1/ε2

phasess

• At each phase, we sample a proper number of components
(without updating the LP)

• It is sufficient to guarantee that, at each phase:

⋄ Each component is sampled with probabilityO(ε)xs
C

⋄ Each edge of the witness treeW is marked with probability
Ω(ε)

• This can be done by using onlyO(log n) random bits per
phase

– p. 27/29

Open Problems

• The best1.39 (and even1.5) bound is w.r.t. the optimal
integral solution. Does is hold w.r.t. the fractional one?

• Other applications of iterative randomized rounding?

⋄ Prize-collecting Steiner tree

⋄ k-MST

⋄ Single-Sink Rent-or-Buy

⋄ . . .

– p. 28/29

THANKS!!!

– p. 29/29

	Large The Steiner Tree Problem
	Large The Steiner Tree Problem
	Large The Steiner Tree Problem

	Large Known Results
	Large Known Results
	Large Known Results

	Large Our Results and Techniques
	Large Our Results and Techniques

	Large Bidirected Cut Relaxation
	Large Bidirected Cut Relaxation

	Large Components
	Large Components

	Large Directing Components
	Large Directing Components
	Large Directing Components
	Large Directing Components
	Large Directing Components

	Large Directed-component Cut Relaxation
	Large Directed-component Cut Relaxation

	Large Iterative Randomized Rounding
	Large Iterative Randomized Rounding

	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}
	Large Algorithm {	t IRR}

	Large Bridges
	Large Bridges
	Large Bridges
	Large Bridges
	Large Bridges
	Large Bridges

	Large Bridges
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma

	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma
	Large The Bridge Lemma

	Large The Bridge Lemma
	Large A First Bound
	Large A First Bound

	Large A First Bound
	Large A First Bound
	Large A First Bound
	Large A First Bound

	Large A Better Bound
	Large A Better Bound
	Large A Better Bound
	Large A Better Bound
	Large A Better Bound
	Large A Better Bound
	Large A Better Bound

	Large A Better Bound
	Large A Better Bound
	Large A Better Bound
	Large A Better Bound

	Large A Better Bound
	Large A Better Bound

	Large A Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound
	Large An Even Better Bound

	Large Derandomization
	Large Derandomization

	Large Open Problems
	hspace {3.5cm} THANKS!!!

