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The Steiner Tree Problem
Def (Steiner tree) Given an undirected graphG = (V,E) with
edge costsc : E → R>0, and a set ofterminal nodesR ⊆ V ,
find the treeS spanningR of minimum costc(S) :=

∑

e∈S c(e).
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Known Results
Hardness:

• NP-hard even for edge costs in{1, 2} [Bern&Plassmann’89]
• no< 96

95
-apx unless P=NP [Chlebik&Chlebikova’02]
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• no< 96

95
-apx unless P=NP [Chlebik&Chlebikova’02]

Approximation:

• 2-apx [minimum spanning tree heuristic]
• 1.83-apx [Zelikovsky’93]
• 1.67-apx [Prömel&Steger’97]
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• 1.55-apx [Robins&Zelikovsky’00]
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Known Results
Hardness:

• NP-hard even for edge costs in{1, 2} [Bern&Plassmann’89]
• no< 96

95
-apx unless P=NP [Chlebik&Chlebikova’02]

Approximation:

• 2-apx [minimum spanning tree heuristic]
• 1.83-apx [Zelikovsky’93]
• 1.67-apx [Prömel&Steger’97]
• 1.65-apx [Karpinski&Zelikovsky’97]
• 1.60-apx [Hougardy&Prömel’99]
• 1.55-apx [Robins&Zelikovsky’00]

Integrality gap:

• ≤ 2 [Goemans&Williamson’95, Jain’98]

– p. 3/29



Our Results and Techniques

Thr There is an (LP-based) deterministicln 4 + ε < 1.39

approximation for the Steiner tree problem
• Here we show an expected1.5 + ε apx

Thr There is an LP-relaxation for Steiner tree with integrality
gap at most1 + ln(3)/2 < 1.55

• Here we show1 + ln 2 < 1.7
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Our Results and Techniques

Thr There is an (LP-based) deterministicln 4 + ε < 1.39

approximation for the Steiner tree problem
• Here we show an expected1.5 + ε apx

Thr There is an LP-relaxation for Steiner tree with integrality
gap at most1 + ln(3)/2 < 1.55

• Here we show1 + ln 2 < 1.7

• Directed-Component Cut Relaxation

⋄ bidirected cut relaxation
⋄ k-components

• Iterative Randomized Rounding

⋄ randomized rounding
⋄ iterative rounding
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Directed-Component

Cut Relaxation
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Bidirected Cut Relaxation
• We select aroot r ∈ R and bi-direct the edges. Then

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V − r, U ∩ R 6= ∅

ze ≥ 0 ∀e ∈ E

• δ+(U) = {ab ∈ E : a ∈ U andb /∈ U}
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Bidirected Cut Relaxation
• We select aroot r ∈ R and bi-direct the edges. Then

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V − r, U ∩ R 6= ∅

ze ≥ 0 ∀e ∈ E

• δ+(U) = {ab ∈ E : a ∈ U andb /∈ U}

Thr [Edmonds’67] ForR = V , BCR is integral

Rem the undirected version has integrality gap2 even forR = V
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Components

Def A component of a Steiner tree is a maximal subtree whose
terminals coincide with its leaves

• A k-component is a component with at mostk terminals

• A Steiner tree made ofk-components isk-restricted.
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Components

Def A component of a Steiner tree is a maximal subtree whose
terminals coincide with its leaves

• A k-component is a component with at mostk terminals

• A Steiner tree made ofk-components isk-restricted.

Thr [Borchers & Du’97] If optk andopt are the costs of an
optimalk-restricted Steiner tree and an optimal Steiner tree,
respectively, then

optk ≤

(

1 +
1

⌊log2 k⌋

)

opt
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Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components
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Directing Components

• Direct the edges of an optimal Steiner tree towards a root
terminalr ∈ R. This way we obtaindirected components

C

sink(C)

sources(C)

– p. 8/29



Directed-component Cut Relaxation

min
∑

C∈C

c(C)xC (DCR)

∑

C∈δ+
C

(U)

xC ≥ 1 ∀U ⊆ R − r, U 6= ∅

xC ≥ 0 ∀C ∈ C

• C is the set of candidate directed components

• δ+
C
(U) = {C ∈ C : sources(C) ∩ U 6= ∅ andsink(C) /∈ U}
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Directed-component Cut Relaxation

min
∑

C∈C

c(C)xC (DCR)

∑

C∈δ+
C

(U)

xC ≥ 1 ∀U ⊆ R − r, U 6= ∅

xC ≥ 0 ∀C ∈ C

• C is the set of candidate directed components

• δ+
C
(U) = {C ∈ C : sources(C) ∩ U 6= ∅ andsink(C) /∈ U}

Lem A (1 + ε) approximation of the optimal fractional solution
optf to DCR can be computed in polynomial time

Lem The cost of a minimum terminal spanning tree is≤ 2 optf

Lem DCR is strictly stronger than BCR
– p. 9/29



Iterative

Randomized Rounding
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Iterative Randomized Rounding

• Solve an LP-relaxation for the problem

• Sample one variable with probability proportional to its
fractional value, and round it

• Iterate the process on the residual problem
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Iterative Randomized Rounding

• Solve an LP-relaxation for the problem

• Sample one variable with probability proportional to its
fractional value, and round it

• Iterate the process on the residual problem

Rem In randomized rounding variables are rounded randomly
and (typically) simultaneously

Rem In iterative rounding variables are rounded
deterministically and (typically) one at a time

– p. 11/29



Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components
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Algorithm IRR

• For t = 1, 2, . . .

⋄ Compute a(1 + ε)-apx solutionxt for DCR

⋄ Sample a componentC = Ct with probability
pt

C := xt
C/

∑

D∈C
xt

D

⋄ ContractCt and update DCR consequently

⋄ If there is only one terminal, output the sampled
components

Rem By adding a dummy component in the root, we can assume
w.l.o.g. thatM :=

∑

D∈C
xt

D is fixed for allt
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Bridge Lemma
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Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

10
1

S

R′
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Bridges
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Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

101
S

R′

brS,c(R
′)

Rem The most expensive edge on a path between two gray nodes
is a bridge
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Bridges

Def Given a Steiner treeS andR′ ⊆ R, thebridges brS,c(R
′) of

S w.r.t. R′ (and edge costsc) are the edges ofS which do not
belong to the minimum spanning tree ofV (S) after the
contraction ofR′

12 9 2

8

1

101
S

R′

brS,c(R
′)

Rem Let brS(R′)=brS,c(R
′), brS(R′):=c(brS(R′)) and

brS(C):=brS(R ∩ C).
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Bridges

Lem For any Steiner treeS onR, brS(R) ≥ 1
2
c(S)

1
2 4

3
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T )
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feasible fractional solutionx to DCR,

∑
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• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T )

• For everyC ∈ C, with capacityxC , construct a directed
terminal spanning treeYC onR ∩ C, with capacityxC and
edge weightsw, as follows

1
2 9 2

1

1

8 10

Rem YC supports the same flow to the root asC w.r.t. terminals
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T )

3 2

4

• Replace each componentC with the correspondingYC

(cumulating capacities)
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T )
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• We obtain a feasible fractional directed terminal spanning
tree on a directed graph withV = R and edge costsw
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T )

3
2

4

3 2

4

• The new terminal spanning treeF is more expensive than the
original terminal spanning treeT by the cycle-rule
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The Bridge Lemma

Lem (Bridge Lemma) For any terminal spanning treeT andany
feasible fractional solutionx to DCR,

∑

C∈C
xC · brT (C) ≥ c(T )

• Summarizing
∑

C∈C

xC · brT (C) =
∑

C∈C

xC · w(YC)

︸ ︷︷ ︸

w-cost of
fractional
terminal

spanning tree

≥ w(F )
︸ ︷︷ ︸

w-cost of
integral
terminal

spanning tree

≥ c(T )
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Approximation Factor
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A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf
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Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

Cor The integrality gap of DCR is at most1 + ln 2 < 1.7
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A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

• T t is a minimum terminal spanning tree at stept
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A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

Lem For anyt, E[c(T t+1)] ≤ (1 − 1
M

)c(T t)

E[c(T t+1)] ≤ c(T t) − E[brT t(Ct)] = c(T t) −
X

C

xt
C

M
brT t(C)

Bridge Lem
≤ c(T t) −

1

M
c(T t)
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E[c(Ct)] ≤
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t≥1

E[
X

C
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C

M
c(C)] ≤

1 + ε

M

X

t≥1
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f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

Lem For anyt, E[c(T t+1)] ≤ (1 − 1
M

)c(T t)

E[c(T t+1)] ≤ c(T t) − E[brT t(Ct)] = c(T t) −
X

C

xt
C

M
brT t(C)

Bridge Lem
≤ c(T t) −

1

M
c(T t)

Cor E[c(T t)] ≤ (1 − 1
M

)t−1c(T 1) ≤ (1 − 1
M

)t−12 optf
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A First Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1 + ln 2 + ε) optf

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 2
X

t=1

opt
f +

1 + ε

M

X

t>M ln 2

E[c(T t)]

≤ opt
f (1 + ε) ln 2 + 2 opt

f (1 + ε)
X

t>M ln 2

1

M

„

1 −
1

M

«t−1

≤ (1 + ε)(ln 2 + 2e
− ln 2) · opt

f
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A Better Bound
Thr Algorithm IRR computes a solution of expected cost
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Thr Algorithm IRR computes a solution of expected cost
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Rem This bound might not hold w.r.t.optf
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A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

E[apx] =
X

t≥1

E[c(Ct)] ≤
X

t≥1

E[
X

C

xt
C

M
c(C)] ≤

1 + ε

M

X

t≥1

E[opt
f,t]

≤
1 + ε

M

M ln 4
X

t=1

E[c(St)] +
1 + ε

M

X

t>M ln 4

E[c(T t)]

• St is a minimum Steiner tree at stept
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• Construct a terminal spanning tree(Y t, w) w.r.t. St and all its
terminalsRt = R ∩ St as in the proof of the bridge lemma.
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A Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (1.5 + ε) opt

Lem For anyt, E[c(St+1)] ≤ (1 − 1
2M

)c(St)

E[c(St+1)] ≤ E[c(S′)] = c(St) − E[c({b(e) ∈ S
t | e ∈ brY t,w(Ct)})]

= c(St) − E[brY t,w(Ct)]

= c(St) −
1

M

X

C

x
t
CbrY t,w(C)

Bridge Lem
≤ c(St) −

1

M
w(Y t)

= c(St) −
1

M
brSt,c(R

t)

≤ c(St) −
1

M

c(St)

2
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E[c(St+1)] ≤ E[c(S′)] = c(St) − E[c({b(e) ∈ S
t | e ∈ brY t,w(Ct)})]

= c(St) − E[brY t,w(Ct)]

= c(St) −
1

M

X

C

x
t
CbrY t,w(C)

Bridge Lem
≤ c(St) −

1

M
w(Y t)

= c(St) −
1

M
brSt,c(R

t)

≤ c(St) −
1

M

c(St)

2

Cor E[c(St)] ≤ (1 − 1
2M

)t−1c(S1) = (1 − 1
2M

)t−1opt
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E[opt
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≤
1 + ε

M

M ln 4
X

t=1

E[c(St)] +
1 + ε

M

X

t>M ln 4

E[c(T t)]

≤ (
1 + ε

M
opt) · (

M ln 4
X

t=1

(1 −
1

2M
)t−1 +

X

t>M ln 4

2(1 −
1

M
)t−1)

≤ (1 + ε)(2 − 2e
− ln(4)/2 + 2e

− ln(4)) · opt

– p. 25/29



An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

– p. 26/29



An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
2 4

3

1 5

• We define a random terminal spanning treeW (witness tree)
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• We associate to eache in the Steiner treeS the edgesW (e) of
W such that the corresponding path inS containse

• Observe that|W (e)| is 1, 2. . . with probability 1
2
, 1

4
, . . .
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• For any sampled componentCt, we delete fromW a random
set of bridges such that each edge ofW is deleted with
probability≥ 1/M (⇐ Farkas’ lemma+Bridge lemma)

• WhenW (e) is deleted, we deletee from S
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An Even Better Bound
Thr Algorithm IRR computes a solution of expected cost
≤ (ln 4 + ε) opt

1
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1 5

• Eache ∈ S survives in expectationM · ln 4 rounds
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Derandomization
Thr There is aln 4 + ε deterministic approximation algorithm
for Steiner tree
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Derandomization
Thr There is aln 4 + ε deterministic approximation algorithm
for Steiner tree

• We define a phase-based randomized algorithm, with1/ε2

phasess

• At each phase, we sample a proper number of components
(without updating the LP)

• It is sufficient to guarantee that, at each phase:

⋄ Each component is sampled with probabilityO(ε)xs
C

⋄ Each edge of the witness treeW is marked with probability
Ω(ε)

• This can be done by using onlyO(log n) random bits per
phase
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Open Problems

• The best1.39 (and even1.5) bound is w.r.t. the optimal
integral solution. Does is hold w.r.t. the fractional one?

• Other applications of iterative randomized rounding?

⋄ Prize-collecting Steiner tree

⋄ k-MST

⋄ Single-Sink Rent-or-Buy

⋄ . . .
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