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1 Overview

In the last lecture we learned about approximation schemes in planar graphs.

In this lecture we go beyond planar graphs and consider bounded-genus graphs, and more generally,
minor-closed graph classes. In particular, we discuss the framework of bidimensionality that can be
used to obtain approximation schemes for many problems in minor-closed graph classes. Afterwards,
we consider decomposition techniques that can be applied to other types of problems.

The main motivation behind this line of work is that some networks are not planar but conform
to some generalization of the concept of planarity, like being embeddable on a surface of bounded
genus. Furthermore, by Kuratowski’s famous theorem [Kur30], planarity can be characterized be
excluding K5 and K3,3 as minors. Hence, it seems natural to study further classes with excluded
minors as a generalization of planar graphs.

One of the goals of this research is to identify the largest classes of graphs for which we can still ob-
tain good and efficient approximations, i.e. to find out how far beyond planarity we can go. Natural
candidate classes are graphs of bounded genus, graphs excluding a fixed minor, powers thereof, but
also further generalizations, like odd-minor-free graphs, graphs of bounded expansion and nowhere
dense classes of graphs. Another objective is to derive general approximation frameworks, two of
which we are going to discuss here: bidimensionality and contraction decomposition.

The main tools we are going to use come on one hand from graph structure theory and on the
other hand from algorithmic results. On the structural side, we use the theory of Graphs on
Surfaces [MT01], Graph Minor Theory [RS04], and in particular, the existence of decompositions
into simpler parts [RS03]. On the algorithms side, some of the major tools are Lipton and Tarjan’s
Planar Separator Theorem [LT79], the seminal decomposition method due to Baker [Bak94], ideas
from fixed-parameter algorithms [DF99], and algorithms for graphs of bounded treewidth [AP89,
Bod88, Cou90].

One of the main results we are going to see is a PTAS for the traveling salesman problem (TSP)
in weighted graphs that exclude a fixed minor that was recently obtained by Demaine, Hajiaghayi,
and Kawarabayashi [DHK11].

2 Preliminaries

We usually denote graphs by letters G,H, and refer to their vertex/edge sets by V (G) and E(G),
respectively. Unless otherwise mentioned, our graphs have n vertices and m edges. For a subset
U ⊆ V (G), we writeG[U ] to denote the subgraph ofG induced by U . The r-neighborhood of a vertex
v, denoted by Nr(v), is the set of vertices at distance at most r from v; we define N(v) = N1(v).
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We let dG(u, v) denote the distance between vertices u, v ∈ V (G).

2.1 Tree Decompositions and Treewidth

A tree decomposition of a graph G is a pair (T,B), where T is a tree and B = {Bu|u ∈ V (T )}
is a family of subsets of V (G), called bags, such that (i) every vertex of G appears in some bag
of B; (ii) for every edge e = {u, v} of G, there is a bag of B containing {u, v}; and (iii) for every
vertex v ∈ V (G) the set of bags containing v forms a connected subtree Tv of T . The width of a
tree decomposition is the maximum size of any bag in B minus 1. The treewidth of G, denoted by
tw(G), is the minimum width over all possible tree decompositions of G. The adhesion of a tree
decomposition is defined as max{|Bu ∩ Bt| | {u, t} ∈ ET }. Many NP-hard optimization problems
become fixed-parameter tractable when parameterized by the treewidth of the instance, by using
dynamic programming on a given tree decomposition. The most well-known result in this area is
Courcelle’s theorem [Cou90] stating that any problem definable in monadic second-order logic is in
FPT when parameterized by the treewidth and the length of the formula.

If T is a path, we call the resulting decomposition a path decomposition.

2.2 Minors, Models, Odd Minors

For an edge e = uv in G, we define the operation G/e of contracting e as identifying u and v and
removing all loops and duplicate edges. A graph H is a minor of G, written as H � G, if it can
be obtained from G by a series of vertex and edge deletions and contractions. We say G is an
H-minor-free graph if it does not contain H as a minor. A class of graphs that is closed under
building minors and does not contain all graphs is called a proper minor-closed class of graphs. A
class of graphs is a proper minor-closed class if and only if it is H-minor-free for some fixed H.
Examples of such classes include planar graphs, bounded-genus graphs, and linklessly embeddable
graphs. An apex-graph is a planar graph augmented by an additional vertex that can have edges to
any other vertex. A class of graphs is called apex-minor-free if it excludes a fixed apex-graph as a
minor. It is a well-known fact that H-minor-free graphs have bounded average degree (depending
only on |H|), i.e. they fulfill m = OH(n); we use the notation OH to denote that the constants
hidden in the big-O depend on |H|.1

A model of H in G is a map that assigns to every vertex v of H, a connected subtree Tv of G
such that the images of the vertices of H are all disjoint in G and there is an edge between them
if there is an edge between the corresponding vertices in H. A graph H is a minor of G if and
only if G contains a model of H. Now H is an odd-minor of G if additionally the vertices of the
trees in the model of H in G can be 2-colored in such a way that (i) the edges of each tree Tv are
bichormatic; and (ii) every edge eG in G that connects two trees Tu and Tv and corresponds to an
edge eH = uv of H is monochromatic. A graph is odd-H-minor-free if it excludes H as an odd
minor. For example, bipartite graphs are odd-K3-minor-free.

1this is necessary since in graph minor theory, the exact dependence is often not known.
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2.3 Almost-embeddable graphs and the graph minor decomposition theorem

Let h be a constant and let S be a surface with r ≤ h boundary cycles C1, . . . , Cr. A graph G is
said to be h-almost embeddable in S if there exists a set A ⊆ V (G) called apices with |A| ≤ h such
that G−A can be written as G0 ∪G1 ∪ · · · ∪Gr so that the following properties hold:

• G0 has an embedding Π in S,

• G1, . . . , Gr are pairwise disjoint and called vortices,

• for 1 ≤ i ≤ r, Gi has a path decomposition ({1, . . . ,mi}, (Bi
j)1≤j≤mi) of width at most h,

• for 1 ≤ i ≤ r there are vertices xi
1, . . . , x

i
mi

such that xi
j ∈ Bi

j for 1 ≤ j ≤ mi and V (G0) ∩
V (Gi) = {xi

1, . . . , x
i
mi
}; xi

1, . . . , x
i
mi

are called society vertices of the vortex Gi,

• for 1 ≤ i ≤ r we have Π(V (G0))∩Ci = {Π(xi
1), . . . ,Π(xi

mi
)} and the points Π(xi

1), . . . ,Π(xi
mi

)
appear on Ci in this order (either clockwise or counter-clockwise).

Note that the vortices may contain internal vertices that do not appear in G0.

For two graphs G1 and G2 whose intersection E(G1) ∩ E(G2) induces a h-clique, we define their
h-clique-sum G1⊕G2 as the graph G1 ∪G2 with any number of edges in the clique E(G1)∩E(G2)
deleted. Note that this operation is not well-defined and can have a number of possible outcomes.

The corner-stone structure theorem of Robertson and Seymour’s Graph Minor Theory [RS03] is
the following:

Theorem 1 ( [RS03]). Any H-minor-free graph can be written as the h-clique-sum of h-almost-
embeddable graphs where h is a constant depending only on H.

Another way to look at this theorem is to say that any H-minor-free graph admits a tree decom-
position of adhesion at most h in which every bag is an h-almost-embeddable graph. This theorem
has later been made algorithmic [DHK05, KW11].

3 Bidimensionality

In this section, we introduce bidimensionality for graph parameters [DFHT05b]. Roughly speaking,
a graph parameter is bidimensional if it does not increase when performing certain operations, and
it is large on specified grid-like graphs. More precisely, there are two types of bidimensionality,
which we need to define: A graph parameter P is g(r)-minor-bidimensional (or just bidimensional)
if it never increases under taking minors, and it is at least g(r) on the (r× r)-grid. The parameter
P is g(r)-contraction-bidimensional if it never increases when contracting edges and it is at least
g(r) on grid-like graphs (see slides and [FGT09]).

To illustrate these definitions, let us look at some examples. A very easy graph parameter is
the number of vertices of a graph, which is obviously r2-minor-bidimensional. An easy example
of a graph parameter that is contraction-decreasing but not minor-decreasing is the length of
the longest cycle in a graph. This parameter is r2-contraction-bidimensional. Likewise, the size
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of a dominating set (a subset of vertices such that each vertex is either in or adjacent to this
subset) is contraction-bidimensional, with g(t) = θ(r2), but not minor-decreasing. More examples
of bidimensional parameters include the size of a vertex cover and the size of a feedback vertex set
(see slides). These are both minor-bidimensional and contraction-bidimensional with g(r) = θ(r2).

Theorem 2. If a parameter k is bidimensional, then it satisfies a parameter-treewidth bound of
the form tw(G) = OH(

√
k) on any H-minor-free class of graphs. If it is contraction bidimensional,

the same is true on all apex-minor-free classes of graphs.

Proof Sketch. This follows immediately from another theorem of Demaine and Hajiaghayi [DH05b]
that states that any H-minor-graph of treewidth w contains an Ω(w)× Ω(w)-grid as a minor.

3.1 Obtaining efficient approximation schemes (EPTAS)

Since Lipton and Tarjan’s [LT79] separator theorem for planar graphs in 1979, several PTASes for
optimization problems on planar graphs and their generalizations have been devised. They were
either based on this or consequent separator theorems or on another seminal framework introduced
by Baker [Bak94] in 1994 using layerwise decomposition. The bidimensionality theory captures
many of these results and generalizes each of these methods in the following way:

The separator approach is based on finding small separators in the input graph, solving the problem
on the resulting smaller graphs recursively, and merging the computed solutions. The size of the
separator plays an important role in this process and has been usually bounded in terms of the size
of the input graph. Using the parameter-treewidth bound, one can find small separators in terms
of the solution size and this boosts the power of this approach by much. The idea is to find a tree
decomposition with treewidth bounded in the size of the parameter and choose the most balanced
cut that it provides. Since the treewidth is bounded by the size of the parameter, so is the size of
the derived cut. Demaine and Hajiaghayi obtain the following result:

Theorem 3 ([DH05a]). Consider a θ(r2)-minor-bidimensional problem that satisfies a certain
separation property described below and that can be solved in time h(tw(G))nO(1). Then the problem
admits an EPTAS with running time h(O(1/ε))nO(1) on all H-minor-free graphs. The same results
holds for θ(r2)-contraction-bidimensional problems on apex-minor-free graphs.

The required separation property is somewhat technical and differs slightly for minor-bidimensional
and contraction-bidimensional parameters but is roughly as follows:

• The solution on disconnected graphs is the union of solutions of each connected component.

• Given a solution to G−C, one can compute a solution to G at an additional cost of ±O(|C|).

• A solution S of G induces on a connected component X of G − C a solution with size
|S ∩X| ±O(|C|).

This results in PTASes in H-minor free graphs for vertex cover, face cover, minimum maximal
matching and feedback vertex set, among others. On apex-minor-free graphs one obtains PTASes
for various kinds of dominating set problems. Many of these were formerly known on planar graphs
but, for example, a PTAS for feedback vertex set was not even known for planar graphs before.
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3.2 Discussion

Very recently, Fomin et al. [FLRS11] revised and simplified the framework for obtaining EPTASes
via bidimensionality.

Many contraction-bidimensional problems such as dominating set tend to still admit a PTAS beyond
apex-minor-free graphs [DFHT05b, FGT09]. Hence, it is conjectured that they might have PTASes
on all H-minor-free graphs. Another conjecture is that bidimensional problems admit PTASes even
on fixed powers of H-minor-free graphs [DFHT05a].

Further directions to consider include:

• Nontrivial weights, such as finding k disjoint paths of minimum weight;

• Directed graphs; here a useful notion of directed treewidth is still lacking;

• Subset type problems. Using completely different techniques, PTASes have been obtained for
subset-type problem such as Steiner tree and subset TSP in planar [BKM09] and bounded-
genus [BDT09] graphs as well as recently for Steiner Forest [BHM10]. It is an important
problem to determine wheather these PTASes can be generalized to H-minor-free graphs and
also to see if there is some unifying framework behind them.

4 Decomposition Techniques

Another approach for obtaining approximation algorithms and schemes is to look for simplifying
decompositions instead of small separator decompositions. For example, consider the following
result:

Theorem 4 ( [DHK10]). Any odd-H-minor-free graph can be decomposed into two pieces, such
that each one is of bounded treewidth.

This theorem immediately results in 2-approximations for a large number of problems, e.g. chro-
matic number: simply find the optimal coloring of each of the two parts using a disjoint set of colors.
Note that this problem is not approximable withing n1−ε in general graphs unless ZPP = NP.

4.1 Deletion decomposition view on Baker’s approach

In order to obtain an approximation scheme, we need decompositions beyond just two parts. In
1994, Baker [Bak94] introduced a framework that essentially reduced the problem of finding an
approximation scheme for certain types of problems to that being able to solve them efficiently on
graphs of bounded treewidth. This approach was later generalized to apex-minor-free [Epp00] and
H-minor-free graphs [Gro03]. Demaine et al. [DHK05] reinterpreted this idea in a slightly weaker
but considerably simple fashion as follows:

Theorem 5 ( [DHK05]). For every graph H there is a constant cH such that for any integer p ≥ 1
and for every H-minor-free graph G, the vertices (edges) of G can be partitioned into p sets such
that any p − 1 of the sets induce a graph of treewidth at most cHp. Furthermore, such a partition
can be found in polynomial time.
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This gives rise to PTASes for H-minor-free graphs for several NP -complete problems, such as
vertex cover, independent set, minimum color sum, maximum P -matching and max-cut. The basic
idea is as follows: decompose the graph into O(1/ε) pieces such that deleting any one of them
results in a graph of bounded treewidth. For each i, compute the optimum solution in the union
of all pieces except piece i and return the minimum solution found. Since one of the pieces is
guaranteed to contain only a small fraction of the optimum, the resulting solution will be nearly
optimal. Tazari [Taz10] improved the running time of this algorithm, making the exponent of n
independent of H.

4.2 Contraction Decomposition

As discussed earlier, many problems are closed under contractions but not under deletion. Hence, it
would be desirable to have a similar theorem as above for the case of contraction instead of deletion.
Indeed, this is possible, as was shown for planar graphs [Kle08], bounded-genus graphs [DHM07],
apex-minor-free graphs [DHK09], and H-minor-free graphs [DHK11].

Theorem 6 ( [DHK11]). For every graph H there is a constant cH such that for any integer p ≥ 1
and for every H-minor-free graph G, the edges of G can be partitioned into p + 1 sets such that
contracting any one of the sets induce a graph of treewidth at most cHp. Furthermore, such a
partition can be found in polynomial time.

Using this theorem and similar (but somewhat different) arguments as above, one can derive the
following framework for obtaining PTASes on H-minor-free graphs:

Theorem 7. Consider a minimization problem P on weighted graphs that is closed under con-
tractions, solvable in polynomial time on graphs of bounded treewidth, and satisfying the following
properties:

1. There is a polynomial-time algorithm that, given a weighted H-minor-free graph (G,w) and
constant δ > 0, computes an H-minor-free graph G′ such that OPT(G′) ≥ αw(G′), for
some constant α > 0 (possibly depending on δ), and any c-approximate solution to G′ can
be converted into a (1 + δ)c-approximate solution to G in polynomial time. (G’ is called a
(δ, α)-spanner of G.)

2. There is a polynomial-time algorithm that, given a subsets S of edges of a weighted graph
(G,w), and given an optimal solution for G/S, constructs a solution for G of value at most
OPT(G/S) + βw(S) for some constant β > 0.

For any fixed minor H, and for any fixed 0 < ε ≤ 1, there is a polynomial-time (1+ε)-approximation
algorithm for problem P in H-minor-free graphs. Furthermore, if α grows as a function of n, then
the running time becomes bounded by a polynomial times the cost of solving the problem on graphs
of treewidth O(α).

4.3 A PTAS for TSP in weighted H-minor-free graphs

The TSP is a testbed for many algorithmic ideas and indeed the first problem with a global connec-
tivity requirement shown to admit a PTAS on unweighted planar graphs [GKP95]. Later PTASes
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were found on weighted planar graphs [AGK+98, Kle08], weighted bounded-genus graphs [DHM07],
unweighted apex-minor-free graphs [DHK09], and finally, weighted H-minor-free graphs [DHK11].
The latter result is obtained via an application of the generic theorem above and the following two
observations:

1. existence of a polynomial time algorithm for TSP in bounded treewidth graphs with singly
exponential dependence on the treewidth [DFT08];

2. existence of an O(log n)-size spanner for TSP in H-minor-free graphs [GS02].

This results in a PTAS with running time nfH(1/ε) for TSP in H-minor-free graphs.

A further application is a PTAS for minimum-weight c-edge-connected submultigraph in H-minor-
free graphs (in this variant, an edge may be used several times to increase connectivity but the
algorithm pays for each use).

4.4 Rough sketch of proof idea of contraction decomposition theorem

Recall from the preliminaries that any H-minor-free graph can be written as h-clique-sums of h-
almost-embeddable graphs. First, observe that the h-almost-embeddable graphs are rather easy to
handle: we already know how to deal with bounded-genus graphs [DHM07] and apices and vortices
can basically be ignored (they only contribute a constant factor to the treewidth). The really hard
part is to deal with the clique-sums and the fact that when building a clique-sum, we may chose to
delete some edges at will. That is, some edges of an almost-embeddable summand turn out to be
virtual, i.e. not present in the actual H-minor-free graph that we are considering. Now, if we find
a contraction decompositon for a summand and are required to contract a virtual edge, we are in
trouble – that edge does not exist and hence cannot be contracted.

Demaine et al. [DHK11] overcome this problem by showing that except for some special cases,
the virtual edges can in a sense be replaced by certain edge-disjoint shortest paths in the other
summand; therefore, if we are required to contract such an edge, we can instead contract one
of those paths. The proof of this is very technical and delves deep into the structure theory of
H-minor-free graphs.

One of the main ideas is involved is to reprove the contraction decomposition theorem of bounded-
genus graphs using radial colorings. The radial graph can be thought of as (something like) the
union of the primal and dual graphs. Now we color each edge at radial distance r from some root
as r mod k. Now, it can be shown that any k consecutive layers have bounded treewidth, provided
the first k do. The next step is to show that if we start with a bounded number of shortest paths
(the ones chosen to replace the virtual edges), then the first k layers will indeed have bounded
treewidth. This is shown by arguing that if the treewidth of those first k layers were large, then
we would have a large grid; but grids can be used to shortcut shortest paths and this leads to a
contradiction.

7



5 Fixed-Parameter Algorithms

Another major area where the techniques mentioned above are massively applied is that of param-
eterized complexity [DF99, FG06]. As this is not the focus of this presentation, we just very briefly
overview some results.

A parameterized problem is said to be fixed-parameter tractable (FPT) if for any instance of size
n with parameter k it can be solved in time f(k)nO(1), for some computable function f solely
dependent on k. The standard parameterization of a problem is the size of the solution, e.g. the
size of a minimum vertex cover, or the size of a maximum independent set. But the parameter
can actually be any property of the instance, such as the treewidth, the genus, or the size of an
excluded minor. Whereas many problems have been shown to be fixed-parameter tractable, a large
number of others (such as k-clique) have been shown to be very unlikely to admit such efficient
algorithms. This is based on the assumption that W[1] 6= FPT, which is the analog of P 6= NP in
parameterized complexity theory.

5.1 Bidimensionality and FPT

The bidimensionality theory provides a framework for capturing many FPT results on H-minor-free
graphs by means of Theorem 2. As we mentioned earlier, many of the considered problems can be
solved on graphs of bounded treewidth in time 2O(tw(G))nO(1). This implies that all these problems
admit subexponential fixed parameter algorithms with running time 2O(

√
k)nO(1) on the mentioned

graph classes, where k is the bidimensional parameter, typically the solution size. Examples of
these problems include vertex cover, minimum maximal matching, dominating set, and unweighted
longest path.

As an example, consider the k-vertex cover problem. To determine if an H-minor-free graph
contains a vertex cover of size at most k, we first approximate its treewidth. If the treewidth is
large, then there is a large grid, and hence the answer is no. Otherwise the treewidth is small, i.e.
OH(
√
k), and we can obtain the exact answer in subexponential time.

It is important to note that for contraction-bidimensional parameters, these results are limited to
apex-minor-free graphs. Still, this does not imply that problems that are contraction-closed but
not minor-closed do not admit FPT algorithms beyond this class: for example, the k-dominating
set problem has been shown to admit a 2O(

√
k)nO(1)-time FPT algorithm on H-minor-free graphs,

map graphs and in fact, all fixed powers of H-minor-free graphs [DFHT05b, DFHT05a].

5.2 Contraction decomposition and the minimum k-way cut problem

Let us consider the k-cut problem where our goal is to remove the fewest number of edges so as to
break the graph into at least k connected components. The parameter is k (and not the solution
size).

Using the contraction decomposition theorem, this problem is easily seen to be FPT in H-minor-
free graphs. Recall that H-minor-free graphs have constant average degree cH . This implies that
OPT ≤ cHk. Now, if we apply contraction decomposition to partition the edges of the graph into
cHk + 1 parts, then there is an optimal solution that avoids one of the parts. Hence, for each part
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i, we can compute the optimal solution on the graph in which part i is contracted in polynomial
time (because it is of bounded treewidth) and return the minimum, resulting in an FPT algorithm.

Kawarabayashi and Thorup [KT11] very recently showed how to use graph minor theory to gener-
alize this result to general graphs for the case when the solution is of bounded size. However, they
use completely different techniques for this aim.
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