
Approximation Algorithms Workshop June 13-17, 2011, Princeton

Lecture: On Allocating Goods to Maximize Fairness — June 15, 2011

Julia Chuzhoy Scribe: Parinya Chalermsook

1 The problem

In the Max-Min Allocation problem, we are given a set A of m agents and set I of n items
where each agent A ∈ A has utility uA,i for item i ∈ I. If uA,i > 0, we say that agent A is interested
in item i. Let π : I→ A be an allocation that assigns items to agents. The total utility each agent
receives from π is defined as uA(π) =

∑
i∈I:π(i)=A uA,i. Our goal is to find an assignment π that

maximizes the minimum utility among the agents, that is, we want to compute π that maximizes
minA∈A uA(π).

We sketch the key ideas used in an Õ(nε) approximation algorithm due to Chakrabarty, Chuzhoy,
and Khanna [CCK09].

Literature: This problem was first studied by Bezakova and Dani [BD05] where they show (n−
m + 1)-approximation and prove that the problem is hard to approximate to within a factor of
2. Later Asadpour and Saberi [AS07] showed an Õ(

√
m) approximation algorithm by rounding

a configuration LP of Bansal and Sviridenko, matching the lower bound on the integrality gap of
the LP, as shown in [BS06]. Recently, Chakrabarty, Chuzhoy and Khanna [CCK09] significantly
improved the approximation ratio to O(nε) for any ε = Ω(log log n/ log n). The running time of
their algorithm is nO(1/ε). Their algorithm also implies a poly-logarithmic approximation ratio
in quasi-polynomial time. Independently of [CCK09], Bateni, Charikar, and Guruswami [BCG09]
gave similar approximation ratio of O(nε) in time nO(1/ε) for restricted instances of the following
forms: First they assume that the utilities are in the set {0, 1,M}, and they consider the graph
whose vertices are A∪I where there is an edge (A, i) if and only if uA,i = M . Their algorithm gives
the above ratio if either: (i) the graph has no cycles, or (ii) each item has at most two adjacent
edges.

A very interesting special case of Max-Min Allocation is when we assume that each item i ∈ I
has the same utility ui for a set of agents Ai ⊆ A, and the utility is zero for all other agents.
This special case is called the Santa Claus Problem and has received a lot of attention. Bansal
and Sviridenko [BS06] showed an O(log logm/ log log logm) approximation algorithm by rounding
the configuration LP they use. Later, Feige [Fei08] and subsequently Asadpour, Feige, and Saberi
[AFS08] showed that the integrality gap of the Bansal-Sviridenko LP is bounded by a constant,
but their proofs are not constructive. Finally, a constant-factor approximation algorithm for the
Santa Clause problem was given by Haeupler, Saha, and Srinivasan [HSS10].

1



2 Canonical Instances and Flow Network

Let M denote the value of the optimal solution. For simplicity of the presentation, we assume
that the utilities only take values in {0, 1,M}. This special case still captures the challenges of the
problem. In the optimal solution, there are two ways to assign items to agents so that each agent
gets enough utility: either assign M utility-1 items, or assign one utility-M item to each agent. An
α-approximate solution would ensure that each agent is either assigned one item of utility M , or
M/α items of utility one.

2.1 Canonical Instances

It is easy to show that, we can assume w.l.o.g. that the input instance is in a specific form, called
canonical instances, in which there are only two types of agents: heavy agents and light agents.

• Each heavy agent A has all utilities uA,i ∈ {0,M}.

• Each light agent A has utility M for one unique item h(A), and her utility is either zero or
one for all other items.

If A 6= A′, then h(A) 6= h(A′). Our goal is to find an O(nε) approximate solution to these canonical
instances.

2.2 Flow network

Now we formulate the problem as an (integral) flow routing problem in network. We will first
compute an initial temporary assignment π′ of items to agents. In this initial assignment, some
agents may not get any item, and we will create a flow network for which feasible flow solution gives
us final assignment π, satisfying all the agents. The main idea of the algorithm is to iteratively
reassign the items using flow routing.

We compute an initial assignment of private items as follows: Each light agent A is assigned the
item h(A). We then construct a bipartite graph where vertices on the left-hand-side represent
the heavy agents, and the right-hand-side has the set of items that have not been assigned yet.
We connect agent A to item i iff A is interested in i. Then we compute maximum matching in
this graph. This matching, together with the assignment of items to light agents, is our initial
assignment π′. If heavy agent A is assigned an item, we say that such agent has a private item in
the initial assignment. Observe that, each light agent has a private item in π′, while some heavy
agents may not have a private item. Such heavy agents are called terminals.

Now we create the flow network where the vertex set is A ∪ I ∪ {s}. We will connect the vertices
by directed edges using the following rules (see Figure 1 for illustration):

• Let S ⊆ I be the set of items that are not assigned to any agent by π′. We connect s to each
vertex in set S.

• For each terminal A and item i that agent A is interested in, we have an edge from i to A.

2



• For each non-terminal A (light or heavy), there is an edge from A to her private item. There
is an edge from each item i that is not a private item to A iff A is interested in i.

Non-terminal 
agents

Terminals Source

s

SPrivate item

Figure 1: Edges in the flow network. Squares represent agents, while circles are items and the
source s.

Flow constraints: We will be looking for an integral flow satisfying the following constraints:

• A non-terminal heavy agent sends a unit flow iff she receives a unit flow.

• Each light agent sends one flow unit iff she receives M flow units.

• Conservation of flow on items.

• No more than one flow unit going through any vertex.

• Each terminal receives one flow unit.

In an α-relaxed flow, each light agent sends one flow unit iff she receives M/α flow units. It is
easy to see that finding an α-approximate solution is equivalent to finding an α-relaxed flow in this
network.

Interpretation of flow:

1. Each flow-path represents a “reassignment chain”, e.g. a flow path from i1 → A1 → . . . →
ik → Ak (where A1, . . . , Ak are heavy agents, and i1, . . . , ik are items) can be interpreted as
an assignment of i1 to agent A1, who is releasing her private item i2 which is in turn assigned
to A2, and so on.

2. The flow through a light agent corresponds to the agent releasing her private item and being
assigned a set of M/α light items instead.

3



If we forget about the source s and consider the graph induced by edges carrying one flow unit, the
resulting graph is simply a collection of directed trees where each tree is rooted at a terminal and
has a subset of vertices in S as leaves (as shown in figure 2). Since heavy agents have in-degree
one and out-degree one, if we break the trees at light agents, we get a collection of paths, called
elementary paths. Each elementary path corresponds to a flow-path. There are three possible types
of elementary paths: (i) a path from a vertex in S to a light agent, (ii) a path from a light agent to
a light agent, and (iii) a path from a light agent to a terminal (observe that, due to the property
of maximum matching, it is impossible to have an elementary path that does not go through light
agents).

Terminal

S

Elementary path

Figure 2: A tree in the flow network. The arcs in this network are elementary paths.

Equivalent problem formulation: Find a collection of disjoint directed trees τ , each having
height at most h and rooted at a terminal, while maximizing the minimum degree of light agents.
Furthermore, we need to ensure that we get one such tree for each terminal. The arcs of these
trees correspond to elementary paths. If we are hoping for O(nε) approximation, we may assume
that h ≤ 1/ε. From now on we focus on solving this problem by LP rounding. The LP rounding
algorithm is used as a subroutine to get the final solution.

3 The LP and the Algorithm

We proceed to write an LP relaxation for the flow problem. First it is easy to see that the standard
flow LP relaxation is too weak, so we will be using a stronger LP. For each h′ ≤ h, for each h′-tuple
of light agents, we have an indicator variable for having a flow-path containing these light agents.
Besides the flow conservation constraints, we also need a set of constraints that ensure consistency
between these variables. The size of this LP is nO(h).

Unfortunately, even this LP has integrality gap of Ω(
√
m), so we cannot hope to get a low-cost

feasible solution by rounding this LP. We will instead use LP rounding to find an “almost-feasible”
solution whose value is within a poly-logarithmic factor of the optimal, and such rounding procedure
is used iteratively as a subroutine to compute the final solution. In an almost feasible solution,
each item is allowed to be assigned at most twice. More precisely, we have two types of elementary
paths: blue paths going to the terminals, and green paths going to the light agents. The paths of

4



the same color are (internally) disjoint, but each item or agent may be shared by one green and
one blue path (i.e. congestion two is allowed). Such solutions can be computed by rounding the
LP. We will not get into the detail of the LP rounding procedure here.

Figure 3: Structure of an almost-feasible solution.

Overcoming the LP integrality gap: Let us first try an obvious way to lower the integrality
gap. Although the integrality gap is Ω(

√
m), it is easy to see that, roughly speaking, it is not more

than the number of terminals in the instance. So an obvious direction one might try is to minimize
the number of terminals in the initial assignment so that the integrality gap is as small as possible.
However, our algorithm already computed a maximum matching between heavy agents and items,
which would minimize the number of terminals. So this approach cannot lower the integrality gap.

We now revise the plan. Our algorithm proceeds in iterations. In each iteration, we find a partial
assignment of items to a subset A′ of light agents, to be removed from the instance (but we do
not remove any items). After removal of such agents, we can reassign their private items to other
agents, so the number of terminals definitely goes down in the next iteration, thus improving the
integrality gap. However, observe that the items that were assigned to agents in A′ may be assigned
again in later iterations, and this could cause problems if we are not careful with the way we select
A′, e.g. in Figure 4 (the “not nice” case), we assign the same utility-M item to two agents; in the
end, at most one agent could get this item, while the other will have utility zero. This scenario
is bad for us since it does not allow any flexibility. However, in the “nice” case of Figure 4, two
agents are satisfied by a large amount of utility-1 flows, so if we randomly assign each item, each
agent only loses a small fraction of incoming flow with high probability. These examples suggest
that some choices of partial assignments are bad for us. Our algorithm will ensure that the partial
assignment found in each iteration is “nice” in the sense that it allows us to satisfy the removed
agents in the end.

Finding a nice assignment: We use the almost feasible solutions computed by LP-rounding to
produce nice assignments. Roughly speaking, we design a subroutine that takes as input a collection
of trees where some vertices may lie on both green and blue paths and there is a tree for every

5



Figure 4: Nice assignments.

terminal. The subroutine will output a collection of disjoint trees for “almost” every terminal. For
each such tree τ , let A(τ) be the light agent that connects to the terminal directly through an
elementary blue path. These agents A(τ) are to be removed in the next iteration, and the partial
assignment of items (defined by the trees) to these agents is guaranteed to be nice. Each terminal
of tree τ can be satisfied by reassigning the private items along the blue path from agent A(τ).
Assuming that we have such a subroutine, we now give a complete description of the iterations.

Description of Iteration i:

1. We are given an initial assignment π of private items.

2. Create a flow network and compute an almost feasible solution.

3. Find a nice assignment for a subset A′ of agents.

4. Remove A′ from the instance and compute a new assignment
of private items π′.

5. Go back to step 1, using π′ as a new assignment.

Remark: We did not cover details of the two main technical components of the paper, i.e. finding
almost feasible solution and turning it into nice assignment. Please refer to [CCK09] for more detail
on this. Also, the algorithm given in this note is an over-simplified description of the real algorithm,
and many steps are not precisely stated here. For instance, agents A′ that are removed from the
problem instance in one iteration may be added back (and possibly removed again) later. The
invariants we maintain ensure that the number of terminals goes down in each iteration, and we

6



have a nice assignment to all agents that are not currently in the instance.

4 Conclusions

We conclude with a list of open problems:

1. We have discussed an Õ(nε)-approximation due to [CCK09] which runs in time nO(1/ε), but
the current lower bound remains at 2. Improving either the lower bound or upper bound
would be interesting.

2. This paper uses an iterative rounding scheme to overcome the integrality gap of the LP. It
is interesting to see if similar framework can be used to deal with other problems whose LP
relaxations have large LP gap.

References

[AFS08] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.
In APPROX-RANDOM, pages 10–20, 2008.

[AS07] Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair alloca-
tion of indivisible goods. In STOC, pages 114–121, 2007.

[BCG09] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin allo-
cation via degree lower-bounded arborescences. In STOC, pages 543–552, 2009.

[BD05] Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exchanges,
5(3):11–18, 2005.

[BS06] Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In STOC, pages 31–40,
2006.

[CCK09] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to
maximize fairness. In FOCS, pages 107–116, 2009.

[Fei08] Uriel Feige. On allocations that maximize fairness. In SODA, pages 287–293, 2008.

[HSS10] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of
the lovasz local lemma. In FOCS, pages 397–406, 2010.

7


