Finding Dense Subgraphs

Moses Charikar

Center for Computational Intractability

Dept of Computer Science

Princeton University

The Dense Subgraph Problem

subset S

Given G, find
dense subgraph S

Center for Computational Intractability, Princeton University

Dense subgraphs are everywhere !

* A useful subroutine for many applications.

Center for Computational Intracta bility, Princeton University

Social Networks

* Trawling the Web for emerging cyber-
communities [KRRT ‘99]

— Web communities are characterized by dense
bipartite subgraphs

Communities
on gitweb

Center for Computational Intractability, Princeton University

Computational Biology

* Mining coherent dense subgraphs across

massive biological networks for functional
discovery [HYHHZ '05]

— dense protein interaction subgraph corresponds to a
protein complex [BD’03] [SM’03]

— dense co-expression subgraph represent tight co-
expression cluster [SS ‘05]

Dense subgraphs are everywhere !

* A useful subroutine for many applications.

* A useful candidate hard problem with many
consequences

Center for Computational Intractability, Princeton University

Public Key Cryptography [ABWV ‘| 0]

* Hardness assumption

=

Center for Computational Intractability, Princeton University

Complexity of Financial Derivatives

* Computational Complexity and Information
Asymmetry in Financial Products [ABBG "10]

— Evaluating the fair value of a derivative is a hard
problem

— Tampered derivatives (CDOs) can be hard to detect.

— Derivative designer can gain a lot from small
asymmetry in information (lemon cost).

S|mP|eSt Model 60 lemons, default w.p. 2

M CDOs

D assets per CDO Dense Subgraph

SO O\C

L Lemons

N Asset classes

| can cluster lemons to | hope lemons are spread
create tampered CDOs. evenly over CDO:s.

Summary so far

* Finding dense subgraphs is useful, both as a
subroutine as well as a candidate hard
problem

* So, what do we know about the problem !
— Formal definition
— New results

— New results on related problems

Densest k-subgraph

Problem. Given G, find a subgraph of size k with the
maximum number of edges (think of k as n”?)

G, n

H, k

Problems of similar flavor

" Max clique
* Max density subgraph — find H
to maximize the ratio:
#edges(H)
| H |

Approximation Algorithm

* Exact problem is hard, prove that efficient
heuristic finds good solution.

o Approximation ratio = Value of heuristic solution

Value of optimal solution

* Solution value = number of edges in subgraph

Densest k-subgraph

Problem. Given G, find a subgraph of size k with the
maximum number of edges (think of k as n”?)

[Feige, Kortsarz, Peleg 93] O(n'3~1%9) approximation

[Feige, Schechtman 97] Q(n'3) integrality gap for natural SDP

[Feige 03] Constant hardness under the Random 3-SAT
assumption

[Khot 05] There is no PTAS unless NP & BPTIME(sub-exp)

Center for Computational Intractability, Princeton University

Main Result

[Bhaskara, C, Chlamtac, Feige, Vijayaraghavan ‘1 0]

Theorem. O(n'/**¢€) approximation for DkS in
time O(n'’)

(Informal) Theorem. Can efficiently detect
subgraphs of high log-density.

Outline

Introduce two average case problems
‘Local counting’ based algorithms for these
Notion of log-density

Techniques lead to algorithms for the DkS
problem

Planted problems related to DkS

Yes

No

H, k

G, n

* Assume G does not have dense
subgraphs

* Good algorithm for DkS = we
can distinguish

Two natural questions:
|. Random in Random: G(k,q)

planted in G(n,p)
2. Arbitrary in Random: Some
dense subgraph planted in G(n,p)

Random in Random

Question. How large should g be so as to
distinguish between

YES: G(n,p) with G(k,q) planted in it
NO: G(n,p)

When would looking for the presence of a
subgraph help distinguish?

Eg. K,; g

Random in Random

Question. How large should g be so as to distinguish between

YES: G(n,p) with G(k,q) planted in it

NO: G(n,p)
[Erdos-Renyi]:
* Appears w.h.p. in G(n,p) if n°p® >> |,
i.e., degree >>n!/
* Does not appear w.h.p.in G(n,p) if
n°p® << |, i.e., degree << n!/6

Valid distinguishing algorithm if: k>q®>> |,and n°>p® << |

l.e., degree << n'¢,and planted-degree >> k!'/6

Random in Random

Question. How large should g be so as to distinguish between
YES: G(n,p) with G(k,q) planted in it
NO: G(n,p)

In general, suppose degree < n°, and planted-degree
> [(Ot€

Find a rational number |-r/s between © and 0+¢, and use
a graph with r vertices and s edges to distinguish.

Log density

A graph on n vertices has log-density 0 if the
average degree is n°

_ logd

avg

log |V |

0

Question. Given G, can we detect the presence
of a subgraph on k vertices, with higher log-
density?

Dense vs. Random

Problem. Distinguish G ~ G(n,p), log-density O from
a graph which has a k-subgraph of log-density 0+¢

(Note. kp = k(n®/n) = kO(k/n)1-° < ko)

More difficult than the planted model earlier

(graph inside is no longer random)

Eg. k-subgraph could have log-density=1 and not
have triangles

Main idea

Example. Say 0 = 2/3,i.e., degree = n??

TN

u \% w
random graph G(n, n"'"3):
any three vertices have O(log n) common
neighbors w.h.p.

planted graph: size k, log-density 2/3+¢:

triple with k3¢ common neighbors

Center for Computational Intractability, Princeton University

Main idea (contd.)

Example 2.0 = |/3,i.e., degree = n'/3
0 ‘/‘\‘/' v

random graph G(n, n"'3):
any pair of vertices have O(log? n) paths of
length 3, w.h.p.

planted graph: size k, log-density |/3+¢€:
exists a pair of vertices with k& paths

Center for Computational Intracta bility, Princeton University

Main idea (contd.)

General strategy: For each rational 0, consider
appropriate caterpillar’ structures, count how
many supported’ on fixed set of leaves

ATT I

= Random graph G(n,p), log-density O:

every leaf tuple supports polylog(n) caterpillars
* Planted graph, size k, log-density O+¢ :

some leaf tuple supports at least k¢ caterpillars

Center for Computational Intractability, Princeton University

Dense vs. Random — conclusion

Theorem. For every £>0,and 0<0<I, we can
distinguish between G(n,p) of log-density 0, and
an arbitrary graph with a k-subgraph of log-
density O+€, in time n©(/e),

(Pick a rational number between 0 and 0+¢, and use the
caterpillar corresponding to it)

DkS in general graphs

Preliminaries

G,n,D

Aim. Obtain a k-subgraph of
avg degree p

Observation |. It suffices to
return a P-dense subgraph with
< k vertices

(remove and repeat)

Preliminaries

Observation 2. [t suffices to return a bipartite
subgraph with density p,and < k vertices on one side

U
V (size - k)

Density is p, so
EUV) = p(lVI+|U)])

" Pick the |V| vertices in U of largest degree
" Density of the resulting subgraph is

LV
r PUVIFHIU)) 2
2lv| U]

Ul e

Algorithm using Cat;

/UK \" \"" X
a b C d e f
Idea. Look at the ‘set of candidates’ for a non-leaf after

fixing a prefix of the leaves

Eg., define S, (v) = set of ‘candidates’ in G for internal
vertex v after fixing a,b,c

(for instance, S, (u) is the set of common nbrs of g, b)
Denote T, (v) =S, .(v) N H

abc abc
Given g, b, .. and the structure, we can compute the S’s

Algorithm using Cat;s (plot outline)

A T I /\ Procedure
S L LocalSearch($)
For every a €V, perform LocalSearch(S,(u))
f it always fails, then 3 g, b, s.t.|S,, (u)| = U, and
Tp(u)| 2 L,
For every a,b, perform LocalSearch(S,, (uv))
f it fails each time, then 3 g, b, s.t. |S,,(v)| = U, and
Tab(V)l 2 L2

Keep doing this ... At the last step, the parameters give
a contradictiont

Main Component — LocalSearch($)

S (S
T=SﬂH.

For eachi = I...k do:

* Pick the i vertices on the right with the most edges to
S (call this S)).If S U §S_has density 2 p, return it.

If no dense subgraph is found, return Fail

Center for Computational Intractability, Princeton University

Linear Programming view

* Can bound the quality of the solution w.r.t
value of a Lift-and-project style LP relaxation.

* Algorithm can be viewed as rounding
procedure for relaxation via successive
conditioning

ATTA

Subexponential algorithm

— 6e
. n178)/4 3pproximation in time 27

 Guess subsets of size n° for every leaf in
caterpillar structure.

Center for Computational Intractability, Princeton University

New developments

* Hardness based on non-standard assumptions

* Integrality gaps for lift-and-project relaxations

Hardness

[AAMMW 1 1]

No constant factor possible if random k-AND
hard to refute.

No constant possible if planted cliques cannot
be found in polynomial time.

Super constant hardness based on stronger
assumption.

Stronger relaxations

Center for Computational Intractability, Princeton University

Gaps for lift-and-project

~ « [BCCFV’10])
5 t rounds of Lovasz-Schrijver: gap niTO1/1))
"« [BCVl1] A
Q 10101‘5”) rounds of Sherali-Adams:
glogn oy
_ gap Q(nZ))

o [GZ']]
n¥ (L) rounds of Lasserre: gap nfi(1)

Center for Computational Intracta bility, Princeton University

Open Problem

 Given random graph: n vertices, degree n'/2

* Planted subgraph: n'’2vertices, degree n!/4-¢€

* Detect in polynomial time ?

Open Problem

graph G
Degree Vn

subset S
size \/ n
degree n”*

Given G, find
dense subgraph S

Center for Computational Intractability, Princeton University

