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The Dense Subgraph Problem

subset S

Given G, find
dense subgraph S
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Dense subgraphs are everywhere !

* A useful subroutine for many applications.
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Social Networks

* Trawling the Web for emerging cyber-
communities [KRRT ‘99]

— Web communities are characterized by dense
bipartite subgraphs



Communities
on gitweb
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Computational Biology

* Mining coherent dense subgraphs across

massive biological networks for functional
discovery [HYHHZ '05]

— dense protein interaction subgraph corresponds to a
protein complex [BD’03] [SM’03]

— dense co-expression subgraph represent tight co-
expression cluster [SS ‘05]



Dense subgraphs are everywhere !

* A useful subroutine for many applications.

* A useful candidate hard problem with many
consequences
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Public Key Cryptography [ABWV ‘| 0]

* Hardness assumption

=
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Complexity of Financial Derivatives

* Computational Complexity and Information
Asymmetry in Financial Products [ABBG "10]

— Evaluating the fair value of a derivative is a hard
problem

— Tampered derivatives (CDOs) can be hard to detect.

— Derivative designer can gain a lot from small
asymmetry in information (lemon cost).
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Summary so far

* Finding dense subgraphs is useful, both as a
subroutine as well as a candidate hard
problem

* So, what do we know about the problem !
— Formal definition
— New results

— New results on related problems



Densest k-subgraph

Problem. Given G, find a subgraph of size k with the
maximum number of edges (think of k as n”?)

G, n

H, k

Problems of similar flavor

" Max clique
* Max density subgraph — find H
to maximize the ratio:
#edges(H)
| H |




Approximation Algorithm

* Exact problem is hard, prove that efficient
heuristic finds good solution.

o Approximation ratio = Value of heuristic solution

Value of optimal solution

* Solution value = number of edges in subgraph



Densest k-subgraph

Problem. Given G, find a subgraph of size k with the
maximum number of edges (think of k as n”?)

[Feige, Kortsarz, Peleg 93] O(n'3~1%9) approximation

[Feige, Schechtman 97] Q(n'3) integrality gap for natural SDP

[Feige 03] Constant hardness under the Random 3-SAT
assumption

[Khot 05] There is no PTAS unless NP & BPTIME(sub-exp)
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Main Result

[Bhaskara, C, Chlamtac, Feige, Vijayaraghavan ‘1 0]

Theorem. O(n'/**¢€) approximation for DkS in
time O(n'’)

(Informal) Theorem. Can efficiently detect
subgraphs of high log-density.



Outline

Introduce two average case problems
‘Local counting’ based algorithms for these
Notion of log-density

Techniques lead to algorithms for the DkS
problem



Planted problems related to DkS

Yes

No

H, k

G, n

* Assume G does not have dense
subgraphs

* Good algorithm for DkS = we
can distinguish

Two natural questions:
|. Random in Random: G(k,q)

planted in G(n,p)
2. Arbitrary in Random: Some
dense subgraph planted in G(n,p)



Random in Random

Question. How large should g be so as to
distinguish between

YES: G(n,p) with G(k,q) planted in it
NO: G(n,p)

When would looking for the presence of a
subgraph help distinguish?

Eg. K,; g



Random in Random

Question. How large should g be so as to distinguish between

YES: G(n,p) with G(k,q) planted in it

NO: G(n,p)
[Erdos-Renyi]:
* Appears w.h.p. in G(n,p) if n°p® >> |,
i.e., degree >>n!/
* Does not appear w.h.p.in G(n,p) if
n°p® << |, i.e., degree << n!/6

Valid distinguishing algorithm if: k>q®>> |,and n°>p® << |

l.e., degree << n'¢,and planted-degree >> k!'/6



Random in Random

Question. How large should g be so as to distinguish between
YES: G(n,p) with G(k,q) planted in it
NO: G(n,p)

In general, suppose degree < n°, and planted-degree
> [(Ot€

Find a rational number |-r/s between © and 0+¢, and use
a graph with r vertices and s edges to distinguish.



Log density

A graph on n vertices has log-density 0 if the
average degree is n°

_ logd

avg

log |V |

0

Question. Given G, can we detect the presence
of a subgraph on k vertices, with higher log-
density?



Dense vs. Random

Problem. Distinguish G ~ G(n,p), log-density O from
a graph which has a k-subgraph of log-density 0+¢

( Note. kp = k(n®/n) = kO(k/n)1-° < ko)

More difficult than the planted model earlier

(graph inside is no longer random)

Eg. k-subgraph could have log-density=1 and not
have triangles



Main idea

Example. Say 0 = 2/3,i.e., degree = n??

TN

u \% w
random graph G(n, n"'"3):
any three vertices have O(log n) common
neighbors w.h.p.

planted graph: size k, log-density 2/3+¢:

triple with k3¢ common neighbors

Center for Computational Intractability, Princeton University



Main idea (contd.)

Example 2.0 = |/3,i.e., degree = n'/3
0 ‘/‘\‘/' v

random graph G(n, n"'3):
any pair of vertices have O(log? n) paths of
length 3, w.h.p.

planted graph: size k, log-density |/3+¢€:
exists a pair of vertices with k& paths
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Main idea (contd.)

General strategy: For each rational 0, consider
appropriate caterpillar’ structures, count how
many supported’ on fixed set of leaves

ATT I

= Random graph G(n,p), log-density O:

every leaf tuple supports polylog(n) caterpillars
* Planted graph, size k, log-density O+¢ :

some leaf tuple supports at least k¢ caterpillars
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Dense vs. Random — conclusion

Theorem. For every £>0,and 0<0<I, we can
distinguish between G(n,p) of log-density 0, and
an arbitrary graph with a k-subgraph of log-
density O+€, in time n©(/e),

(Pick a rational number between 0 and 0+¢, and use the
caterpillar corresponding to it)



DkS in general graphs



Preliminaries

G,n,D

Aim. Obtain a k-subgraph of
avg degree p

Observation |. It suffices to
return a P-dense subgraph with
< k vertices

(remove and repeat)



Preliminaries

Observation 2. [t suffices to return a bipartite
subgraph with density p,and < k vertices on one side

U
V (size - k)

Density is p, so
EUV) = p(lVI+|U)])

" Pick the |V| vertices in U of largest degree
" Density of the resulting subgraph is

LV
r PUVIFHIU)) 2
2lv| U]

Ul e



Algorithm using Cat;

/UK \" \"" X
a b C d e f
Idea. Look at the ‘set of candidates’ for a non-leaf after

fixing a prefix of the leaves

Eg., define S, (v) = set of ‘candidates’ in G for internal
vertex v after fixing a,b,c

(for instance, S, (u) is the set of common nbrs of g, b)
Denote T, (v) =S, .(v) N H

abc abc
Given g, b, .. and the structure, we can compute the S’s



Algorithm using Cat;s (plot outline)

A T I /\ Procedure
S L LocalSearch($)
For every a €V, perform LocalSearch(S,(u))
f it always fails, then 3 g, b, s.t.|S,, (u)| = U, and
Tp(u)| 2 L,
For every a,b, perform LocalSearch(S,, (uv))
f it fails each time, then 3 g, b, s.t. |S,,(v)| = U, and
Tab(V)l 2 L2

Keep doing this ... At the last step, the parameters give
a contradictiont




Main Component — LocalSearch($)

S (S
T=SﬂH.

For eachi = I...k do:

* Pick the i vertices on the right with the most edges to
S (call this S)).If S U §S_has density 2 p, return it.

If no dense subgraph is found, return Fail
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Linear Programming view

* Can bound the quality of the solution w.r.t
value of a Lift-and-project style LP relaxation.

* Algorithm can be viewed as rounding
procedure for relaxation via successive
conditioning

ATTA




Subexponential algorithm

— 6e
. n178)/4 3pproximation in time 27

 Guess subsets of size n° for every leaf in
caterpillar structure.
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New developments

* Hardness based on non-standard assumptions

* Integrality gaps for lift-and-project relaxations



Hardness

[AAMMW 1 1]

No constant factor possible if random k-AND
hard to refute.

No constant possible if planted cliques cannot
be found in polynomial time.

Super constant hardness based on stronger
assumption.



Stronger relaxations
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Gaps for lift-and-project

~ « [BCCFV’10] )
5 t rounds of Lovasz-Schrijver: gap niTO1/1) )
"« [BCVl1] A
Q 10101‘5” ) rounds of Sherali-Adams:
glogn oy
\_ gap Q(nZ) )

o [GZ']]
n¥ (L) rounds of Lasserre: gap nfi(1)
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Open Problem

 Given random graph: n vertices, degree n'/2

* Planted subgraph: n'’2vertices, degree n!/4-¢€

* Detect in polynomial time ?



Open Problem

graph G
Degree Vn

subset S
size \/ n
degree n”*

Given G, find
dense subgraph S
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