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The Dense Subgraph Problem 
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graph G 

subset S 

Given G, find 
dense subgraph S 



Dense subgraphs are everywhere ! 

•  A useful subroutine for many applications. 
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Social Networks 

•  Trawling the Web for emerging cyber-
communities [KRRT ‘99] 
– Web communities are characterized by dense 

bipartite subgraphs 
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Communities  
on gitweb 



Computational Biology 

•  Mining coherent dense subgraphs across 
massive biological networks for functional 
discovery [HYHHZ ’05] 
 
– dense protein interaction subgraph corresponds to a 

protein complex [BD’03] [SM’03] 
 

– dense co-expression subgraph represent tight co-
expression cluster [SS ‘05] 
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Dense subgraphs are everywhere ! 

•  A useful subroutine for many applications. 

•  A useful candidate hard problem with many 
consequences 
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Public Key Cryptography [ABW ‘10] 

•  Hardness assumption 
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Complexity of Financial Derivatives 

•  Computational Complexity and Information 
Asymmetry in Financial Products [ABBG ’10] 
– Evaluating the fair value of a derivative is a hard 

problem 
– Tampered derivatives (CDOs) can be hard to detect. 
– Derivative designer can gain a lot from small 

asymmetry in information (lemon cost). 
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Simplest Model 
M CDOs 

N Asset classes L Lemons 

D assets per CDO 

I know which asset 
classes are lemons 

There are L lemons, 
but which are they?  

Dense Subgraph 

6σ lemons, default w.p. ½ 

I can cluster lemons to 
create tampered CDOs. 

I hope lemons are spread 
evenly over CDOs. 



Summary so far 

•  Finding dense subgraphs is useful, both as a 
subroutine as well as a candidate hard 
problem 

•  So, what do we know about the problem ? 
– Formal definition 
– New results  
– New results on related problems 
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Densest k-subgraph 

Problem.  Given G, find a subgraph of size k with the 
maximum number of edges (think of k as n½) 

 
G, n 

H, k 

Problems of similar flavor 
 
§  Max clique 
§  Max density subgraph – find H 
to maximize the ratio: 

||
)(edges#

H
H
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Approximation Algorithm 

•  Exact problem is hard, prove that efficient 
heuristic finds good solution. 

•  Approximation ratio =  

•  Solution value = number of edges in subgraph 
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Value of optimal solution 
Value of heuristic solution 



Densest k-subgraph 

Problem.  Given G, find a subgraph of size k with the 
maximum number of edges (think of k as n½) 

 
[Feige, Kortsarz, Peleg 93]  O(n1/3 – 1/90) approximation  
[Feige, Schechtman 97]  Ω(n1/3) integrality gap for natural SDP 
 
[Feige 03] Constant hardness under the Random 3-SAT 

assumption 
[Khot 05] There is no PTAS unless NP ⊆ BPTIME(sub-exp) 
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Main Result  

Theorem.   O(n1/4 +ε) approximation for DkS in                
time O(n1/ε) 
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(Informal) Theorem.  Can efficiently detect 
subgraphs of high log-density.  

[Bhaskara, C, Chlamtac, Feige, Vijayaraghavan ‘10] 



Outline 

•  Introduce two average case problems 
•  ‘Local counting’ based algorithms for these 
•  Notion of log-density 
•  Techniques lead to algorithms for the DkS 

problem 
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Planted problems related to DkS 

G, n 

H, k 

G, n 

Yes 

No 

•   Assume G does not have dense 
subgraphs 
•   Good algorithm for DkS ⇒ we 
can distinguish 

Two natural questions: 
1.  Random in Random: G(k,q) 

planted in G(n,p) 
2.  Arbitrary in Random: Some 

dense subgraph planted in G(n,p) 
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Random in Random 

Question.  How large should q be so as to 
distinguish between 

YES:  G(n,p) with G(k,q) planted in it 
NO:  G(n,p) 

When would looking for the presence of a 
subgraph help distinguish? 

Eg.  K2,3 
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Random in Random 

Question.  How large should q be so as to distinguish between 
 YES:  G(n,p) with G(k,q) planted in it 
 NO:  G(n,p) 

[Erdos-Renyi]: 
•  Appears w.h.p. in G(n,p) if n5p6 >> 1, 
i.e., degree >> n1/6 

•  Does not appear w.h.p. in G(n,p) if 
n5p6 << 1, i.e., degree << n1/6 

Valid distinguishing algorithm if:  k5q6 >> 1, and n5p6 << 1 
 

I.e.,  degree << n1/6, and planted-degree >> k1/6 
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Random in Random 

Question.  How large should q be so as to distinguish between 
 YES:  G(n,p) with G(k,q) planted in it 
 NO:  G(n,p) 

In general, suppose degree < nδ, and planted-degree 
> kδ+ε 
 

Find a rational number 1-r/s between δ and δ+ε, and use 
a graph with r vertices and s edges to distinguish. 
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Log density 

A graph on n vertices has log-density δ if the 
average degree is nδ 

 
    δ = 

 
Question. Given G, can we detect the presence 

of a subgraph on k vertices, with higher log-
density? 

 
 

||log
log

V
davg
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Dense vs. Random 

Problem.  Distinguish G ~ G(n,p), log-density δ from 
a graph which has a k-subgraph of log-density δ+ε 

 

( Note.  kp = k(nδ/n) = kδ(k/n)1-δ < kδ ) 
 

More difficult than the planted model earlier 
(graph inside is no longer random) 

 
Eg. k-subgraph could have log-density=1 and not 

have triangles 
Center for Computational Intractability, Princeton University 



Example.  Say δ = 2/3, i.e., degree = n2/3 

 
 

 

 
random graph G(n, n-1/3):  

any three vertices have O(log n) common 
neighbors w.h.p. 

 
planted graph:  size k, log-density 2/3+ε: 

Main idea 

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

triple with k3ε common neighbors 
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Main idea (contd.) 
Example 2. δ = 1/3, i.e., degree = n1/3 

 

 
 
 
random graph G(n, n-1/3):  

any pair of vertices have O(log2 n) paths of 
length 3, w.h.p. 

planted graph: size k, log-density 1/3+ε:  
exists a pair of vertices with kε paths 

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶
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P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

u v 



Main idea (contd.) 

General strategy:  For each rational δ, consider 
appropriate `caterpillar’ structures, count how 
many `supported’ on fixed set of leaves 

 

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

…

§  Random graph G(n,p), log-density δ:    
       every leaf tuple supports polylog(n) caterpillars 
§  Planted graph, size k, log-density δ+ε :  
       some leaf tuple supports at least kε caterpillars 

Center for Computational Intractability, Princeton University 
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Dense vs. Random – conclusion 

Theorem.  For every ε>0, and 0<δ<1, we can 
distinguish between G(n,p) of log-density δ, and 
an arbitrary graph with a k-subgraph of log-
density δ+ε, in time nO(1/ε). 

 
(Pick a rational number between δ and δ+ε, and use the 

caterpillar corresponding to it) 
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DkS in general graphs 



Preliminaries 

Aim.  Obtain a k-subgraph of  
avg degree ρ 

 
Observation 1.  It suffices to 

return a ρ-dense subgraph with 
≤ k vertices 
 (remove and repeat) 

G, n, D 

H, k, d 
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Preliminaries 

Observation 2.  It suffices to return a bipartite 
subgraph with density ρ, and ≤ k vertices on one side 

U 
V (size · k) 

§  Pick the |V| vertices in U of largest degree 
§  Density of the resulting subgraph is 

Density is ρ, so 
E(U,V) = ρ(|V|+|U|) 
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Algorithm using Catδ 

Idea. Look at the ‘set of candidates’ for a non-leaf after 
fixing a prefix of the leaves 

Eg., define Sabc(v) = set of ‘candidates’ in G for internal 
vertex v after fixing a,b,c 

(for instance, Sab(u) is the set of common nbrs of a, b) 
Denote Tabc(v) = Sabc(v) ∩ H 
Given a, b, .. and the structure, we can compute the S’s 

a b c d e f 

u v w x 
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Algorithm using Catδ (plot outline) 

•  For every a ∈ V,  perform LocalSearch(Sa(u)) 
•  If it always fails, then ∃a, b, s.t. |Sab(u)| ≤ U1 and  

|Tab(u)| ≥ L1 

•  For every a,b, perform LocalSearch(Sab(u)) 
•  If it fails each time, then ∃a, b, s.t. |Sab(v)| ≤ U2 and  

|Tab(v)| ≥ L2 

•  Keep doing this … At the last step, the parameters give 
a contradiction! 

a b c d e f 

u v w x 

Procedure 
LocalSearch(S) 
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Main Component – LocalSearch(S) 

For each i = 1…k, do: 
•  Pick the i vertices on the right with the most edges to 

S (call this Sr). If S ∪ Sr has density ≥ ρ, return it. 
If no dense subgraph is found, return Fail 

S 
Γ(S) 

T 

T = S ∩ H 
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•  Can bound the quality of the solution w.r.t 
value of a Lift-and-project style LP relaxation. 

•  Algorithm can be viewed as rounding 
procedure for relaxation via successive 
conditioning 

Linear Programming view 

Center for Computational Intractability, Princeton University 
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Subexponential algorithm 

•                  approximation in time  

•  Guess subsets of size      for every leaf in 
caterpillar structure. 

Center for Computational Intractability, Princeton University 
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New developments 

•  Hardness based on non-standard assumptions 
•  Integrality gaps for lift-and-project relaxations 
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Hardness 

•  [AAMMW ’11] 
•  No constant factor possible if random k-AND 

hard to refute. 

•  No constant possible if planted cliques cannot 
be found in polynomial time. 

•  Super constant hardness based on stronger 
assumption. 
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Stronger relaxations 
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Lasserre 

Sherali-Adams 

Lovasz-Schrijver 



Gaps for lift-and-project 

•  [BCCFV ’10] 
   rounds of Lovasz-Schrijver:  gap 

 

•  [BCV ‘11] 
                  rounds of Sherali-Adams:   
                                                gap  

•   [GZ ‘11]           
           rounds of Lasserre:   gap   

Center for Computational Intractability, Princeton University 

nΩ(1) nΩ(1)

t n
1
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Open Problem 

•  Given random graph: n vertices, degree n1/2 

•  Planted subgraph:  n1/2 vertices, degree n1/4-ε 

•  Detect in polynomial time ? 
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Open Problem 
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graph G 

subset S 
size √n 

Given G, find 
dense subgraph S 

Degree √n 

degree n¼ 


