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Linear Programming and Simplex

The simplex algorithm, Dantzig (1947)

maximize cTx

subject to Ax ≤ b
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Linear Programming and Simplex

Basic feasible solutions and pivoting

max 2x1 − 2x3 − 2x5 − x6
s.t. 1

3x1 + x2 − 2
3x3 −

2
3x5 = 1

x3 + x4 − x6 = 1
x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0
{x2, x4, x6}

The corners of the polytope correspond to basic feasible
solutions: At most n, the number of equality constraints,
variables are non-zero. The non-zero variables, or basic variables,
form a basis.

Moving along an edge corresponds to pivoting: Exchange a
variable in the basis with a non-basic variable.
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Linear Programming and Simplex

Basic feasible solutions and pivoting
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Linear Programming and Simplex

Basic feasible solutions and pivoting

max 9− 6x2 − 2x4 + x5
s.t. x1 = 7− 3x2 − 2x4

x3 = 2− x4 − x5
x6 = 1− x5
x1, x2, x3, x4, x5, x6 ≥ 0

{x1, x3, x6}

x2

x4

x5
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Linear Programming and Simplex

Basic feasible solutions and pivoting

max 10− 6x2 − 2x4 − x6
s.t. x1 = 7− 3x2 − 2x4

x3 = 1− x4 + x6
x5 = 1− x6
x1, x2, x3, x4, x5, x6 ≥ 0

{x1, x3, x5}

x2

x4

x6

The corners of the polytope correspond to basic feasible
solutions: At most n, the number of equality constraints,
variables are non-zero. The non-zero variables, or basic variables,
form a basis.

Moving along an edge corresponds to pivoting: Exchange a
variable in the basis with a non-basic variable.
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Linear Programming and Simplex

Pivoting rules

Simplex method is parameterized by a pivoting rule: the method of
chosing adjacent vertices with better objective

Deterministic, oblivious rules: Almost all known natural oblivious
deterministic pivoting rules are known to be exponential. See, e.g.,
Amenta and Ziegler (1996).

Randomized rules: We (joint work with Thomas D. Hansen and
Uri Zwick) have recently shown that Random-Edge and
Random-Facet are subexponential.

History-based rules (this talk): We show that Zadeh’s
Least-Entered rule is subexponential.

Our results have been obtained by using a deep relation between
algorithmic game theory and linear programming.
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Linear Programming and Simplex

On the diameter of polytopes

Hirsch conjecture (1957): The diameter of any n-facet polytope in
d-dimensional Euclidean space is at most n− d.

Santos (2010): A counter-example to the Hirsch conjecture.

It remains open whether the diameter is polynomial, or even linear,
in n and d.
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Games and Policy Iteration

Markov decision processes (MDPs)

t6

-4

-1

2
3

1
3

Reward: −1 − 4 + 6 = 1
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Games and Policy Iteration

Markov decision processes (MDPs)

t6

-4

-1

2
3

1
3

Shapley (1953), Bellman (1957):

There exists an optimal history-independent
choice from each state.

Reward: −1 − 4

+ 6 = 1
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Games and Policy Iteration

Policies and corresponding values

A policy π is a choice of an action
from each state.

The value valπ(i) of a state i ∈ S for
a policy π, is the expected sum of
rewards obtained when moving
according to π, starting from i.

An action is an improving switch
w.r.t. π if it improves the values.

It suffices to check whether an action
is improving for one step w.r.t. the
current values.

A policy π∗ is optimal iff there are no
improving switches. Optimal policies
simultaneously maximize the values of
all states.
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Games and Policy Iteration

MDPs and linear programming

No improving switches for optimal policy π∗:

∀i ∈ S : valπ∗(i) = max
a∈Ai

ra +
∑
j∈S

pa,jvalπ∗(j)

where Ai is the set of actions from state i, ra is the expected
reward of using action a, and pa,j is the probability of moving to
state j when using action a.

This can be used to formulate an LP for solving the MDP:

minimize
∑
i∈S

vi

s.t. ∀i ∈ S ∀a ∈ Ai : vi ≥ ra +
∑
j∈S

pa,jvj
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Games and Policy Iteration

Primal and dual LPs for MDPs

minimize
∑
i∈S

vi

s.t. ∀i ∈ S ∀a ∈ Ai : vi ≥ ra +
∑
j∈S

pa,jvj

maximize
∑
i∈S

∑
a∈Ai

raxa

s.t. ∀i ∈ S :
∑
a∈Ai

xa = 1 +
∑
j∈S

∑
a∈Aj

pa,ixa

Flow conservation:

x1 = 1 x2 = 6

x3 = 4 x4 = 2

x1 + x2 = 1 + x3 + x4

Every basic feasible solution corresponds to a policy π.
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Games and Policy Iteration

Variables of the primal LP

t6

-4

-1

2
3

1
3

02

0

-1

x1 = 0

x2 = 1

x3 = 0

x4 = 2

x5 = 0

x6 = 1

xa is the expected number of
times action a is used, summed
over all starting states.

We have:∑
i∈S

valπ(i) =
∑
a∈π

rax
π
a
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Games and Policy Iteration

From MDP to LP

t6

-4

-1

2
3

1
3
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0

-1

x1 = 0

x2 = 1

x3 = 0

x4 = 2

x5 = 0

x6 = 1

max −1 + 2x1 − 2x3 − x5
s.t. x2 = 1− 1

3x1 + 2
3x3 + 2

3x5
x4 = 2− x3 − x5
x6 = 1− x5
x1, x2, x3, x4, x5, x6 ≥ 0

{x2, x4, x6}
x1

x3

x5
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Games and Policy Iteration

Diameter

Question: theoretically possible to have polynomially many iterations?

Let G be a Markov decision process and n be the number of nodes.

Definition: the diameter of G is the least number of iterations required
to solve G

Small Diameter Theorem

The diameter of G is less or equal to n.
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Lower bound construction

We define a family of lower bound MDPs Gn such that the
Least-Entered pivoting rule will simulate an n-bit binary
counter.

We make use of exponentially growing rewards (and penalties): To
get a higher reward the MDP is willing to sacrifice everything that
has been built up so far.

Notation: Integer priority p corresponds to reward (−N)p, where
N = 7n+ 1.

. . . < 5 < 3 < 1 < 2 < 4 < 6 < . . .

5 for (−N)5
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Lower Bound for Zadeh’s Rule

Background

The use of priorities is inspired by parity games.

Friedmann (2009): The strategy iteration algorithm may require
exponentially many iterations to solve parity games.

Fearnley (2010): The strategy iteration algorithm may require
exponentially many iterations to solve MDPs.

We also first proved a lower bound for parity games and then
transferred the result to MDPs and linear programs.

Oliver Friedmann (LMU) Zadeh Lower Bound 17



Lower Bound for Zadeh’s Rule

Background

The use of priorities is inspired by parity games.

Friedmann (2009): The strategy iteration algorithm may require
exponentially many iterations to solve parity games.

Fearnley (2010): The strategy iteration algorithm may require
exponentially many iterations to solve MDPs.

We also first proved a lower bound for parity games and then
transferred the result to MDPs and linear programs.

Oliver Friedmann (LMU) Zadeh Lower Bound 17



Lower Bound for Zadeh’s Rule

Background

The use of priorities is inspired by parity games.

Friedmann (2009): The strategy iteration algorithm may require
exponentially many iterations to solve parity games.

Fearnley (2010): The strategy iteration algorithm may require
exponentially many iterations to solve MDPs.

We also first proved a lower bound for parity games and then
transferred the result to MDPs and linear programs.

Oliver Friedmann (LMU) Zadeh Lower Bound 17



Lower Bound for Zadeh’s Rule

Related game-theoretic settings

Abstract

LP-type problems

Concrete

Linear programming
Turn-based stochastic games

21/2 players

Mean payoff games
2 players

Markov decision problems
11/2 players

Parity games
2 players

Deterministic MDPs
1 player
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Turn-based stochastic games

21/2 players

Mean payoff games
2 players

Markov decision problems
11/2 players

Parity games
2 players

Deterministic MDPs
1 player

∈ NP ∩ coNP ∈ P
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Lower Bound for Zadeh’s Rule

Zadeh’s pivoting rule

Zadeh’s Least-Entered rule

Perform single switch that has been applied least often.

(taken from David Avis’ paper)
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Lower Bound for Zadeh’s Rule

Tie-Breaking Rule

Tie-Breaking Rule = method of selecting a switch in case of a tie
(w.r.t. the occurrence record)

Proof of Small Diameter Theorem implies:

Corollary

There is a tie-breaking rule s.t. Zadeh’s rule requires linearly many
iterations in the worst-case.

Consequence: lower bound construction is equipped with particular
tie-breaking rule
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Lower Bound for Zadeh’s Rule

Binary Counting

0 0 0 0

0

00

0

00

0

00

0

00

T y
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Lower Bound for Zadeh’s Rule

Binary Counting

0 0 0 0

0

00

0

00

0

00

0

00

TPrinciple: If a bit can be set, then all bits can be set. y
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Lower Bound for Zadeh’s Rule

Binary Counting

0 0 0 1

0

00

0

00

0
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11

T Tie-Breaking: We decide to set the first bit. y
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Lower Bound for Zadeh’s Rule

Binary Counting

0 0 1 R

0

00

0

00

1

11

1

11

T Set the second bit and reset the first bit. y
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Lower Bound for Zadeh’s Rule

Binary Counting

0 0 1 0

0
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T Set the first bit again. y
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Lower Bound for Zadeh’s Rule

Binary Counting

0 0 1 1
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting

1 0 1 1

1

11

0

01

1

13

1

16

T Continue... y

Oliver Friedmann (LMU) Zadeh Lower Bound 21



Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Binary Counting
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Lower Bound for Zadeh’s Rule

Binary Counting

1 1 1 1

1
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T Problem: Occurrence record unbalanced! y
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Lower Bound for Zadeh’s Rule

Binary Counting (... again!)

0 0 0 0
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0

00
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TLet’s do it again - watch the occurrence record this time! y
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Lower Bound for Zadeh’s Rule

Binary Counting (... again!)
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Binary Counting (... again!)
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Oliver Friedmann (LMU) Zadeh Lower Bound 22



Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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TReplace gadget by two-bit, conjunctive structure. y
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule
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0 0 0 1

0

1

00

1

0

1

00

1

0

1

00

1

1

1

11

1

T Set other improving edge of first gadget. y

Oliver Friedmann (LMU) Zadeh Lower Bound 23



Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits

1 R R R

1

1

14

5

1

1

12

3

1

1

13

3

1

1

14

4

T Reset all three lower gadgets. y

Oliver Friedmann (LMU) Zadeh Lower Bound 23



Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive bits
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive representatives
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Lower Bound for Zadeh’s Rule

Binary Counting with conjunctive representatives
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Lower Bound for Zadeh’s Rule
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Lower Bound for Zadeh’s Rule
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Binary Counting with conjunctive representatives
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Binary Counting with conjunctive representatives
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Binary Counting with conjunctive representatives
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Bit Gadget
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Bit unset

Improving to go in

valσ(a) = ε · valσ(b)︸ ︷︷ ︸
≈0

+ (1− ε)︸ ︷︷ ︸
≈1

·valσ(x) ≈ valσ(x)
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Bit Gadget
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Bit still unset (only one edge
going in)

Still improving to go in with
the other edge

valσ(a) =
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1 + ε
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Lower Bound for Zadeh’s Rule

Bit Gadget
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y has now better valuation
than x

Gadget could close, but also
open completely again

valσ(a) =
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Lower Bound for Zadeh’s Rule

Bit Gadget
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Lower Bound for Zadeh’s Rule

Bit Gadget
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Bit set

Now b can be “observed” from
a

valσ(a) = valσ(b)
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Lower Bound for Zadeh’s Rule
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Concluding Remarks
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Concluding Remarks

Open problems

Obtain lower bounds for related history-based pivoting rules

Least-recently considered: subexponential lower bound
Least-recently basic, Least-recently entered, Least basic iterations:
work in progress

Polytime algorithm for two-player games and the like

Strongly polytime algorithm for LPs (and MDPs)

Resolving the Hirsch conjecture

Find game-theoretic model with unresolved diameter bounds
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Concluding Remarks

The slide usually called “the end”.

Thank you for listening!
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