Distributed k-Means and k-Median Clustering on General Topologies

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang

Problem Setup

- **k-Clustering**: Given a set \(P \) of \(N \) points in \(\mathbb{R}^d \), find centers \(x = \{x_1, \ldots, x_k\} \) to minimize \(\sum_{p \in P} \text{cost}(p,x) \).
- Widely studied cost functions in ML & TCS
 - \(k \)-median: \(\text{cost}(p,x) = \min_{x \in x} d(p,x) \)
 - \(k \)-means: \(\text{cost}(p,x) = \min_{x \in x} \|p-x\|^2 \)
- **Modern Challenge**: data distributed over different sites, e.g., distributed databases, images and videos over networks,

Distributed Clustering:

- Communication graph: undirected graph \(G \) on \(n \) nodes with \(m \) edges, where an edge indicates that the two nodes can communicate.
- Global data: \(P \) is divided into local data sets \(P_1, \ldots, P_n \).
- Goal: efficient distributed algorithm with low communication

Our Results

- Efficient algorithm that
 - outputs \((1+\epsilon)\alpha\)-approx, given any non-distributed \(\alpha\)-approx algo
 - has low communication independent of #points in global data set: \(O(kd+nk) \) points
 - has good experimental performance
- Two stages of our distributed algorithm:
 1. Each node constructs a local portion of a global summary
 2. Communicate the local portions, and compute approximation solution on the summary

Coreset

- **Coreset**: [Kar-Peled-Mazorod, STOC'14]: short summaries capturing relevant info w.r.t. all clusterings

Definition. An \(r \)-coreset for \(P \) is a set of points \(D \) and weights \(w \) on \(D \) s.t.

\[
\forall x, (1-\epsilon)\text{cost}(P,x) \leq \sum_{p \in D} w_p \text{cost}(q,x) \leq (1+\epsilon)\text{cost}(P,x).
\]

- Non-distributed coreset construction [Feldman-Langberg, STOC'11]
 1. Compute a constant approximation solution \(A \)
 2. Sample points \(S \) with probability proportional to \(\text{cost}(p,A) \);
 \(|S| = O(kd) \) for constant \(\epsilon \)

Distributed Coreset Construction

Algorithm (two rounds, interactive)

1. Compute a constant approximation solution \(A_i \) for \(P_i \).
 Communicate the costs \(\text{cost}(P_i,A_i) \)
 \[
 \text{cost}(P_i,A_i) \quad \quad \text{cost}(P_i,A_i)
 \]

2. Sample points from \(P_i \) according to the multimonial distribution given by \(\text{cost}(P_i,A_i) \);
 \# sampled points = \(O(kd) \) for constant \(\epsilon \)

Analysis

- **Uniform sampling for metric balls**: \(\forall B(x,r) = \{ p : d(p,x) \leq r \} \), \(|B(x,r)| = \frac{|B(x,r)|}{n} \pm \epsilon \) when \(|S| = O(\log|\text{distinct } B(x,r) \cap P_i|^2) \)

Distributed Clustering

Algorithm

1. Distributed coreset construction
2. Communicate the local portions of the coreset
3. Compute approximation solution on the coreset

Theorem. Given any non-distributed \(\alpha\)-approx algo as a subroutine, our algo computes a \((1+\epsilon)\alpha\)-approx solution. The total communication cost is \(O(m(kd+nk)) \) points for constant \(\epsilon \)

Total Communication on Different Networks (for constant \(\epsilon \)):

1. Star graph: \(O(kd+nk) \) points
 - by sending the local portions of the coreset to the coordinator
2. Rooted Tree: \(O(h(kd+nk)) \) points
 - by sending the local portions of the coreset to the root
3. General Topologies: \(O(m(kd+nk)) \) points
 - Message Passing: on each node do
 - Communicate its local message to all its neighbors
 - When the node receives new message, communicate to all its neighbors

Experiments

- **Data set**: ColorHistogram (\(\approx 68k \) points in \(\mathbb{R}^{22}, k = 10, n = 25 \))
- **YearPredictionMSD** (\(\approx 0.5m \) points in \(\mathbb{R}^{45}, k = 50, n = 100 \))

Results on ColorHistogram:

- star, exponential
- grid, weighted
- preferential, degree-based

Results on YearPredictionMSD:

- star, exponential
- grid, weighted
- preferential, degree-based