Distributed Frank-Wolfe Algorithm
A Unified Framework for Communication-Efficient Sparse Learning

Aurélien Bellet1
Joint work with Yingyu Liang2, Alireza Bagheri Garakani1, Maria-Florina Balcan2 and Fei Sha1

1University of Southern California
2Georgia Institute of Technology

ICML 2014 Workshop on New Learning Frameworks
and Models for Big Data

June 25, 2014
Introduction
Distributed learning

- General setting
 - Data arbitrarily distributed across different sites (nodes)
 - Examples: large-scale data, sensor networks, mobile devices
 - Communication between nodes can be a serious bottleneck

- Research questions
 - Theory: study tradeoff between communication complexity and learning/optimization error
 - Practice: derive scalable algorithms, with small communication and synchronization overhead
Learn sparse combinations of n distributed “atoms”:

$$\min_{\alpha \in \mathbb{R}^n} f(\alpha) = g(A\alpha) \quad \text{s.t.} \quad \|\alpha\|_1 \leq \beta \quad (A \in \mathbb{R}^{d \times n})$$

- Atoms are distributed across a set of N nodes $V = \{v_i\}_{i=1}^N$
- Nodes communicate across a network (connected graph)
- Note: domain can be unit simplex Δ_n instead of ℓ_1 ball

$$\Delta_n = \{\alpha \in \mathbb{R}^n : \alpha \geq 0, \sum_i \alpha_i = 1\}$$
Introduction

Applications

▶ Many applications
 ▶ LASSO with distributed features
 ▶ Kernel SVM with distributed training points
 ▶ Boosting with distributed learners
 ▶ ...

Example: Kernel SVM

▶ Training set \(\{ \mathbf{z}_i = (\mathbf{x}_i, y_i) \}_{i=1}^n \)
▶ Kernel \(k(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle \)
▶ Dual problem of L2-SVM:

\[
\min_{\alpha \in \Delta_n} \quad \alpha^T \tilde{K} \alpha
\]

▶ \(\tilde{K} = [\tilde{k}(\mathbf{z}_i, \mathbf{z}_j)]_{i,j=1}^n \) with \(\tilde{k}(\mathbf{z}_i, \mathbf{z}_j) = y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) + y_i y_j + \frac{\delta_{ij}}{C} \)
▶ Atoms are \(\varphi(\mathbf{z}_i) = [y_i \varphi(\mathbf{x}_i), y_i, \frac{1}{\sqrt{C}} \mathbf{e}_i] \)
Introduction

Contributions

- **Main ideas**
 - Adapt the Frank-Wolfe (FW) algorithm to distributed setting
 - Turn FW sparsity guarantees into communication guarantees

- **Summary of results**
 - Worst-case optimal communication complexity
 - Balance local computation through approximation
 - Good practical performance on synthetic and real data
Outline

1. Frank-Wolfe in the centralized setting
2. Proposed distributed FW algorithm
3. Communication complexity analysis
4. Experiments
Frank-Wolfe in the centralized setting

Algorithm and convergence

Convex minimization over a compact domain \mathcal{D}

\[
\min_{\alpha \in \mathcal{D}} f(\alpha)
\]

\mathcal{D} convex, f convex and continuously differentiable

Let $\alpha^{(0)} \in \mathcal{D}$

for $k = 0, 1, \ldots$ do

\[
s^{(k)} = \arg \min_{s \in \mathcal{D}} \langle s, \nabla f(\alpha^{(k)}) \rangle
\]

\[
\alpha^{(k+1)} = (1 - \gamma)\alpha^{(k)} + \gamma s^{(k)}
\]

end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After $O(1/\epsilon)$ iterations, FW returns α s.t. $f(\alpha) - f(\alpha^*) \leq \epsilon$.
Frank-Wolfe in the centralized setting

Algorithm and convergence

Convex minimization over a compact domain \mathcal{D}

$$
\min_{\alpha \in \mathcal{D}} \ f(\alpha)
$$

\mathcal{D} convex, f convex and continuously differentiable

Let $\alpha^{(0)} \in \mathcal{D}$

for $k = 0, 1, \ldots$ do

$$
\begin{align*}
\mathbf{s}^{(k)} &= \arg \min_{\mathbf{s} \in \mathcal{D}} \langle \mathbf{s}, \nabla f(\alpha^{(k)}) \rangle \\
\alpha^{(k+1)} &= (1 - \gamma) \alpha^{(k)} + \gamma \mathbf{s}^{(k)}
\end{align*}
$$

end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After $O(1/\epsilon)$ iterations, FW returns α s.t. $f(\alpha) - f(\alpha^*) \leq \epsilon$.

(figure adapted from [Jaggi, 2013])
Frank-Wolfe in the centralized setting

Algorithm and convergence

Convex minimization over a compact domain \mathcal{D}

$$\min_{\alpha \in \mathcal{D}} f(\alpha)$$

- \mathcal{D} convex, f convex and continuously differentiable

Let $\alpha^{(0)} \in \mathcal{D}$

for $k = 0, 1, \ldots$ do

$$s^{(k)} = \arg \min_{s \in \mathcal{D}} \langle s, \nabla f(\alpha^{(k)}) \rangle$$

$$\alpha^{(k+1)} = (1 - \gamma)\alpha^{(k)} + \gamma s^{(k)}$$

end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After $O(1/\epsilon)$ iterations, FW returns α s.t. $f(\alpha) - f(\alpha^*) \leq \epsilon$.

(figure adapted from [Jaggi, 2013])
Frank-Wolfe in the centralized setting
Use-case: sparsity constraint

▶ A solution to linear subproblem lies at a vertex of \mathcal{D}

▶ When \mathcal{D} is the ℓ_1-norm ball, vertices are signed unit basis vectors $\{\pm e_i\}_{i=1}^n$:

 ▶ FW is greedy: $\alpha^{(0)} = 0 \implies \|\alpha^{(k)}\|_0 \leq k$
 ▶ FW is efficient: simply find max absolute entry of gradient

▶ FW finds an ϵ-approximation with $O(1/\epsilon)$ nonzero entries, which is worst-case optimal [Jaggi, 2013]

▶ Similar derivation for simplex constraint [Clarkson, 2010]
Distributed Frank-Wolfe (dFW)

Sketch of the algorithm

Recall our problem

$$\min_{\alpha \in \mathbb{R}^n} f(\alpha) = g(A\alpha) \quad \text{s.t.} \quad \|\alpha\|_1 \leq \beta \quad (A \in \mathbb{R}^{d \times n})$$

Algorithm steps

1. Each node computes its local gradient
Distributed Frank-Wolfe (dFW)

Sketch of the algorithm

Recall our problem

\[
\min_{\alpha \in \mathbb{R}^n} \quad f(\alpha) = g(A\alpha) \quad \text{s.t.} \quad \|\alpha\|_1 \leq \beta \quad (A \in \mathbb{R}^{d \times n})
\]

Algorithm steps

1. Each node computes its local gradient
Distributed Frank-Wolfe (dFW)

Sketch of the algorithm

Recall our problem

\[
\min_{\alpha \in \mathbb{R}^n} f(\alpha) = g(A\alpha) \quad \text{s.t.} \quad \|\alpha\|_1 \leq \beta \quad (A \in \mathbb{R}^{d \times n})
\]

Algorithm steps

2. Each node broadcast its largest absolute value
Distributed Frank-Wolfe (dFW)

Sketch of the algorithm

Recall our problem

$$\min_{\alpha \in \mathbb{R}^n} f(\alpha) = g(A\alpha) \quad \text{s.t.} \quad \|\alpha\|_1 \leq \beta \quad (A \in \mathbb{R}^{d \times n})$$

Algorithm steps

3. Node with global best broadcasts corresponding atom $a_j \in \mathbb{R}^d$
Distributed Frank-Wolfe (dFW)

Sketch of the algorithm

Recall our problem

\[
\min_{\alpha \in \mathbb{R}^n} f(\alpha) = g(A\alpha) \quad \text{s.t.} \quad \|\alpha\|_1 \leq \beta \quad (A \in \mathbb{R}^{d \times n})
\]

Algorithm steps

4. All nodes perform a FW update and start over
Distributed Frank-Wolfe (dFW)

Convergence

- Let B be the cost of broadcasting a real number

Theorem 1 (Convergence of exact dFW)

After $O(1/\epsilon)$ rounds and $O((Bd + NB)/\epsilon)$ total communication, each node holds an ϵ-approximate solution.

- Tradeoff between communication and optimization error
- No dependence on total number of combining elements
Distributed Frank-Wolfe (dFW)

Approximate variant

- Exact dFW is scalable but requires synchronization
 - Unbalanced local computation → significant wait time

- Strategy to balance local costs:
 - Node v_i clusters its n_i atoms into m_i groups
 - We use the greedy m-center algorithm [Gonzalez, 1985]
 - Run dFW on resulting centers

- Use-case examples:
 - Balance number of atoms across nodes
 - Set m_i proportional to computational power of v_i
Distributed Frank-Wolfe (dFW)

Approximate variant

- Define
 - \(r^{opt}(A, m) \) to be the optimal \(\ell_1 \)-radius of partitioning atoms in \(A \) into \(m \) clusters, and \(r^{opt}(m) := \max_i r^{opt}(A_i, m_i) \)
 - \(G := \max_\alpha \| \nabla g(A\alpha) \|_\infty \)

Theorem 2 (Convergence of approximate dFW)

After \(O(1/\epsilon) \) iterations, the algorithm returns a solution with optimality gap at most \(\epsilon + O(G r^{opt}(m^0)) \). Furthermore, if \(r^{opt}(m^{(k)}) = O(1/G_k) \), then the gap is at most \(\epsilon \).

- Additive error depends on cluster tightness
- Can gradually add more centers to make error vanish
Communication complexity analysis
Cost of dFW under various network topologies

- Star graph and rooted tree: $O(Nd/\epsilon)$ communication (use network structure to reduce cost)

- General connected graph: $O(M(N + d)/\epsilon)$, where M is the number of edges (use a message-passing strategy)
Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is \(\Omega(d/\epsilon) \).

- Shows that *dFW* is worst-case optimal in \(\epsilon \) and \(d \)

- Proof outline:
 1. Identify a problem instance for which any \(\epsilon \)-approximate solution has \(O(1/\epsilon) \) atoms
 2. Distribute data across 2 nodes s.t. these atoms are almost evenly split across nodes
 3. Show that for any fixed dataset on one node, there are \(T \) different instances on the other node s.t. in any 2 such instances, the sets of selected atoms are different
 4. Any node then needs \(O(\log T) \) bits to figure out the selected atoms, and we show that \(\log T = \Omega(d/\epsilon) \)
Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is \(\Omega \left(\frac{d}{\epsilon} \right) \).

- Shows that \(dFW \) is worst-case optimal in \(\epsilon \) and \(d \)

- Proof outline:
 1. Identify a problem instance for which any \(\epsilon \)-approximate solution has \(O(1/\epsilon) \) atoms
 2. Distribute data across 2 nodes s.t. these atoms are almost evenly split across nodes
 3. Show that for any fixed dataset on one node, there are \(T \) different instances on the other node s.t. in any 2 such instances, the sets of selected atoms are different
 4. Any node then needs \(O(\log T) \) bits to figure out the selected atoms, and we show that \(\log T = \Omega(\frac{d}{\epsilon}) \)
Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is $\Omega(d/\epsilon)$.

- Shows that dFW is worst-case optimal in ϵ and d

- Proof outline:
 1. Identify a problem instance for which any ϵ-approximate solution has $O(1/\epsilon)$ atoms
 2. Distribute data across 2 nodes s.t. these atoms are almost evenly split across nodes
 3. Show that for any fixed dataset on one node, there are T different instances on the other node s.t. in any 2 such instances, the sets of selected atoms are different
 4. Any node then needs $O(\log T)$ bits to figure out the selected atoms, and we show that $\log T = \Omega(d/\epsilon)$
Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is $\Omega(d/\epsilon)$.

- Shows that dFW is worst-case optimal in ϵ and d

- Proof outline:
 1. Identify a problem instance for which any ϵ-approximate solution has $O(1/\epsilon)$ atoms
 2. Distribute data across 2 nodes s.t. these atoms are almost evenly split across nodes
 3. Show that for any fixed dataset on one node, there are T different instances on the other node s.t. in any 2 such instances, the sets of selected atoms are different
 4. Any node then needs $O(\log T)$ bits to figure out the selected atoms, and we show that $\log T = \Omega(d/\epsilon)$
Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is $\Omega(d/\epsilon)$.

- Shows that dFW is worst-case optimal in ϵ and d
- Proof outline:
 1. Identify a problem instance for which any ϵ-approximate solution has $O(1/\epsilon)$ atoms
 2. Distribute data across 2 nodes s.t. these atoms are almost evenly split across nodes
 3. Show that for any fixed dataset on one node, there are T different instances on the other node s.t. in any 2 such instances, the sets of selected atoms are different
 4. Any node then needs $O(\log T)$ bits to figure out the selected atoms, and we show that $\log T = \Omega(d/\epsilon)$
Experiments

- Objective value achieved for given communication budget
 - Comparison to baselines
 - Comparison to distributed ADMM

- Runtime of dFW in realistic distributed setting
 - Exact dFW
 - Benefits of approximate variant
 - Asynchronous updates
Experiments

Comparison to baselines

- dFW can be seen as a method to select “good” atoms
- We investigate 2 baselines:
 - Random: each node picks a fixed set of atoms at random
 - Local FW [Lodi et al., 2010]: each node runs FW locally to select a fixed set of atoms
- Selected atoms are sent to a coordinator node which solves the problem using only these atoms
Experiments

Comparison to baselines

- Experimental setup
 - SVM with RBF kernel on Adult dataset ($n = 32K, d = 123$)
 - LASSO on Dorothea dataset ($n = 100K, d = 1.15K$)
 - Atoms distributed across 100 nodes uniformly at random

- dFW outperforms both baselines

\begin{figure}
\centering
\subfloat[Kernel SVM results]{
\includegraphics[width=0.45\textwidth]{kernel_svm_results.png}
\label{fig:kernel_svm_results}} \hspace{1cm}
\subfloat[LASSO results]{
\includegraphics[width=0.45\textwidth]{lasso_results.png}
\label{fig:lasso_results}}
\caption{Comparison of methods for Kernel SVM and LASSO.}
\end{figure}
Experiments

Comparison to distributed ADMM

- ADMM [Boyd et al., 2011] is popular to tackle many distributed optimization problems
 - Like dFW, can deal with LASSO with distributed features
 - Parameter vector α partitioned as $\alpha = [\alpha_1, \ldots, \alpha_N]$
 - Communicates partial/global predictions: $A_i \alpha_i$ and $\sum_{i=1}^{N} A_i \alpha_i$

- Experimental setup
 - Synthetic data ($n = 100K$, $d = 10K$) with varying sparsity
 - Atoms distributed across 100 nodes uniformly at random
Experiments

Comparison to distributed ADMM

- dFW advantageous for sparse data and/or solution, while ADMM is preferable in the dense setting

- Note: no parameter to tune for dFW

LASSO results (MSE vs communication)
Experiments
Realistic distributed environment

- Network specs
 - Fully connected with $N \in \{1, 5, 10, 25, 50\}$ nodes
 - A node is a single 2.4GHz CPU core of a separate host
 - Communication over 56.6-gigabit infrastructure

- The task
 - SVM with Gaussian RBF kernel
 - Speech data with 8.7M training examples, 41 classes
 - Implementation of dFW in C++ with openMPI\(^1\)

\(^1\)http://www.open-mpi.org
Experiments

Realistic distributed environment

- When distribution of atoms is roughly balanced, exact dFW achieves near-linear speedup

- When distribution is unbalanced (e.g., 1 node has 50% of the data), great benefits from approximate variant

(a) Exact dFW on uniform distribution

(b) Approximate dFW to balance costs
Experiments
Real-world distributed environment

- Another way to reduce synchronization costs is to perform asynchronous updates
- To simulate this, we randomly drop communication messages with probability p
- dFW is fairly robust, even with 40% random drops

![Graph showing dFW under communication errors and asynchrony]
Summary and perspectives

- The proposed distributed algorithm
 - is applicable to a family of sparse learning problems
 - has theoretical guarantees and good practical performance
 - appears robust to asynchrony and communication errors

- See arXiv paper for details, proofs and additional experiments

Future directions

- Propose an asynchronous version of dFW
- A theoretical study in this challenging setting
 - Could potentially build on recent work in distributed optimization that assumes or enforces a bound on the age of the updates [Ho et al., 2013, Liu et al., 2014]
References

References II

