Clustering Perturbation Resilient k-Median Instances

Yingyu Liang

Joint work with Maria Florina Balcan
Georgia Institute of Technology
Given the distances d on a set S of points

Find centers $\{c_1, \ldots, c_k\}$ to minimize the k-median cost

$$\sum_{p \in P} \min_i d(p, c_i)$$
New Direction: Perturbation Resilience

\(\alpha\)-perturbation of \(d\): \(d(p, q) \leq d'(p, q) \leq \alpha d(p, q)\), for any \(p, q \in S\)

\(\alpha\)-Perturbation Resilience [Bilu-Linial, ICS10]

The optimal clustering does not change after \(\alpha\)-perturbation.
\(\alpha\)-perturbation of \(d\): \(d(p, q) \leq d'(p, q) \leq \alpha d(p, q)\), for any \(p, q \in S\)

\(\alpha, \epsilon\)-Perturbation Resilience [Balcan-Liang, ICALP12]

The optimal clustering changes on at most \(\epsilon\) fraction of points after \(\alpha\)-perturbation.
Our Results

1. Structural property of α-PR for $\alpha > 4$:
 except for $\epsilon|S|$ bad points, all points satisfy strict separation.

2. Approximation algorithm:
 produces $1 + O(\epsilon/\rho)$-approx, where $\rho = \min_i |C_i^*|/n$
Faster Algorithm

Key: structural property preserved in random sample of small size

Sublinear algorithm:
- perform approximation algorithm on a sample of size $\tilde{\Theta}(\frac{k}{\epsilon^2})$
- produces $2(1 + O(\epsilon/\rho))$-approx
- runs in time logarithmic in #points