Influence Function Learning in Information Diffusion Networks

Nan Du Yingyu Liang Maria-Florina Balcan Le Song
Georgina Institute of Technology

Motivation
- Problem: Given a set of influential earlier users, can we predict how many people will follow them in the future?

Previous Two-Stage Solutions
- Algorithm
 - Learn one of the following diffusion models
 - Discrete-Time Independent cascade Model (DIC)
 - Linear Threshold Model (LT)
 - Continuous-Time independent cascade Model (CIC)
 - Calculate the influence from the chosen model
- Weakness
 - The diffusion model may be misspecified.
 - Need to learn both hidden networks and model parameters.
 - Influence calculation is challenging.

Can we avoid diffusion model learning & influence computation?

Influence Function
- Definition: \(\sigma(S) : 2^V \rightarrow \mathbb{R} \) of a set of nodes \(S \subseteq V \), \(|V| = d \)
- \(\sigma(S) \) is the expected number of infected nodes by set \(S \).
- \(\sigma(S) \) is common to many diffusion models.

Property: \(\sigma(S) \) is a coverage function for DIC, LT and CIC model
- \(\sigma(S) = \sum_{i \in S} \mathbb{I}(a_i > u) \)
- a ground set \(U \) with weight \(a_i \geq 0, u \in U \)
- a collection of subsets \(\{A_i : A_i \subseteq U\} \) associated with each \(s \in V \)

Random Reachability Function
- View the diffusion process as a node reachability problem in a random graph sampled from a joint distribution induced by a diffusion model.
- Represent each sample \(s \) as a binary reachability matrix with \(R_{sd} = \begin{cases} 1, & j \text{ is reachable from source } s, \\ 0, & \text{otherwise}. \end{cases} \)
- Denote each set \(S \) as a binary vector \(\chi_S \in \{0,1\}^d, \chi_S(s) = 1 \iff s \in S \)
- Determine the reachability of node \(j \) from \(S \) by whether \(\chi_S \mathbb{I}(R_{j}) \geq 1 \)
- Transform \(\chi_S \mathbb{I}(R_{j}) \) into a binary function \(\phi(\chi_S \mathbb{I}(R_{j})) : 2^V \rightarrow \{0,1\} \)
- Denote the influence of \(S \) in \(\phi \) as \(\#(S) = \sum_{j=1}^{d} \phi(\chi_S \mathbb{I}(R_{j})) \).

Expectation of Random Reachability Functions
- Overall influence function
 \[\mathbb{E}(|S| \mathbb{I}(R_{j})) = \sum_{j=1}^{d} \mathbb{E}(\phi(\chi_S \mathbb{I}(R_{j}))) = \sum_{j=1}^{d} \Pr(\phi(\chi_S \mathbb{I}(R_{j})) = 1 | \mathbb{S}) \]
- Simple Learning Strategy
 Learn each \(f(\chi_S) \) separately in parallel and sum them together.

Random Basis Function Approximation
- Denote \(f(\chi_S) = \mathbb{E}(\phi(\chi_S \mathbb{I}(R_{j}))) \) where \(r = R_{j} \), and \(p(r) \) is the marginal distribution of column \(j \) of \(R \) induced by \(P_R \).
- Let \(C \) be the minimum value such that \(p(r) \leq C q(r) \)
- Draw \(K \) random binary vectors \(\{t_1, t_2, \ldots, t_K\} \) from \(p(r) \) such that
 \[f(\chi_S) = \sum_{k=1}^{K} w_k \phi(\chi_S) = w^T \phi(\chi_S) \]
- subject to \(\sum_{k=1}^{K} w_k = 1, w_k \geq 0 \)

Lemma
- Let \(p_i(\chi_S) \) be a distribution of \(\chi_S \).
- If \(K = O(\frac{\log \Delta_S}{\epsilon^2}) \) and \(t_1, \ldots, t_K \) are drawn i.i.d. from \(p_i(\chi_S) \), then with probability at least \(1 - \delta \), there exists an \(f^* \in \mathcal{F} \) such that \(\mathbb{E}[f^*(\chi_S) - f^*(\chi_S)]^2 \leq \epsilon^2 \)
- Propose \(q(r) = \frac{1}{|S|} \sum_{i=1}^{K} q(r_i) \) where \(q(r_i) \) is the marginal distribution of the \(i \)-th dimension of \(r \) estimated by \(q(r_i) = \frac{1}{|S|} \sum_{i=1}^{K} q_i(r_i) \)

Efficient Learning Algorithm
- Truncate \(f^* \) to avoid zero probability \(f^*(\chi_S) = (1 - 2\lambda)f^*(\chi_S) + \lambda \) is a small threshold value.
- Draw \(m \) i.i.d. cascades \(D^{(m)} := \{(S_1, I_1), \ldots, (S_m, I_m)\} \) with source set \(S_i \) and the respective set of influenced nodes \(I_i \)
- Learn the parameters \(w \) by maximizing the log-likelihood for each node \(j \)
 \[w = \arg\max_{w} \left(\sum_{i=1}^{m} \log f^*(\chi_S) + \log(1 - \chi_S) \right) \]
- subject to \(\sum_{j=1}^{d} w_j = 1, w_j \geq 0 \)

by using convex optimization techniques.

Overall Algorithm: Influer

Experimental Evaluation: Competitors
- Continuous-time Independent Cascade model with exponential pairwise transmission function (CIC).
- Continuous-time Independent Cascade model with exponential pairwise transmission function and given network Structure (CIC-S).
- Discrete-time Independent Cascade model (DIC).
- Discrete-time Independent Cascade model with given network Structure (DIC-S).
- Modified Logistic Regression
- Linear Regression

Experimental Evaluation: Synthetic Datasets
- Robustness to model mis-specifications

Experimental Evaluation: Real Data
- MAE on real data
- Effect of random features

Sample Complexity
- Suppose we set \(\lambda = O(\frac{1}{d}), K = O(\frac{1}{\epsilon^2}), \) and \(m = O(\frac{1}{\epsilon^2}) \). Then with probability at least \(1 - \delta \) over the drawing of the random features, the output of Algorithm 1 satisfies \(\mathbb{E}[\|\mathbb{E}_R[\sum_{j=1}^{d} f^*(\chi_S) - \mathbb{E}(S)]^2 \leq \epsilon \]

Intuitively, when the gap \(C \) between \(p \) and \(q \) is large, we need more random features and more training data to learn the weights.