Advanced Distributed Systems

RPCs & MapReduce
Wyatt Lioyd

Some slides adapted from:
Dave Andersen/Srini Seshan;
Lorenzo Alisi/Mike Dahlin;
Frans Kaashoek/Robert Morris/Nickolai Zeldovich;
Jinyang Li;
Jeff Dean;

Remote Procedure Call (RPC)

» Key question:

— “What programming abstractions work well
to split work among multiple networked
computers?”

Common Communication Pattern

M R Something
}Work

Done / Response

/

Alternative: Sockets

* Manually format
« Send network packets directly

struct foomsg {
u_int32_t len;
}

send_foo(char *contents) {
int msglen = sizeof(struct foomsg) + strlen(contents);
char buf = malloc(msglen);
struct foomsg *fm = (struct foomsg *)buf;
fm->len = htonl(strlen(contents));
memcpy (buf + sizeof(struct foomsg),
contents,
strlen(contents));
write(outsock, buf, msglen);

}

Remote Procedure Call (RPC)

» Key piece of distributed systems machinery

« Goal: easy-to-program network communication
— hides most details of client/server communication
— client call is much like ordinary procedure call
— server handlers are much like ordinary procedures

 RPC is widely used!
— Google: Protobufs
— Facebook: Thrift
— Twitter: Finalge

RPC Example

RPC ideally makes network communication look just
like a function call

Client:
z =fn(x, y)

Server:

fn(x, y) {
compute

return z

}

RPC aims for this level of transparency
Hope: even novice programmers can use function calls!

RPC since 1983

Caller machine

Network

Callee machine

Call packet i
receive

Result packet

K

User User-stub RPCRuntime

local ck —ﬂ transmit

call rgument \l/
wait

local npack \l/

return ult ﬁ receive

importer exporter

interface

Fig. 1.

RPCRuntime Server-stub Server
npack I
rgument l
work
pack \
transmit It retumn
importer exporter
interface

The components of the system, and their interactions for a simple call,

RPC since 1983

Caller machine Network Callee machine
User User-stub RPCRuntime RPCRuntime Server-stub Server
, Call packet
ck transmit receive npack]
ument N rgument
wait ml
npack \l/ Result packet Pack
ult ﬁ receive (transmit It returm

Fig. 1. The components of the system, and their interactions for a simple call.

: What the programmer writes.

RPC Interface

* Uses interface definition language

service MultiplicationService

{
}

int multiply(int n1, int n2),

MultigetSliceResult multiget_slice(1:required list<binary> keys,
2:required ColumnParent column_parent,
3:required SlicePredicate predicate,
4:required Consistencylevel consistency_level=ConsistencylLevel ONE,
99: LamportTimestamp lts)
throws (1:InvalidRequestException ire, 2:UnavailableException ue,
3:TimedOutException te),

RPC Stubs

« Generates boilerplate in specified language
— (Level of boilerplate varies, Thrift will generate servers in C++, ...

$ thrift --gen go multiplication.thrift

 Programmer needs to setup connection and call generated function

client = MultiplicationService.Client(...)
client.multiply(4.5)

 Programmer implements server side code

public class MultiplicationHandler implements MultiplicationService.Iface {

public int multiply(int nl1, int n2) throws TException {
System.out.println("Multiply(" + n1 + "," + n2 + ")");
return nl * n2;

RPC since 1983

Caller machine

Network

Callee machine

RPCRuntime Server-stub

Call packet .
receive — funpack

K

Result packet

User-stub RPCRuntime
ck transmit
rgument \l/
wait
weck | |,
result /T receive
importer exporter
interface
Fig. 1.

Marshalling

transmit K

Server

]
rgument l
work
pack \1/
It return
importer exporter
interface

The components of the system, and their interactions for a simple call,

Marshalling

 Format data into packets
— Tricky for arrays, pointers, objects, ..

 Matters for performance
— https://github.com/eishay/jvm-serializers/wiki

ser (nanos) deser (nanos)
protostufi-ll 494 protostufi-ll 732
kryo- Il 655 kryo- M 837
fast-serialization-lll 704 fast-serialization-l 863
nifas atabind 1l 1149
msgpack-databind-ll 1370

b-afterourner- Il 1491

Other Details

* Binding
— Client needs to find a server’s networking
address

— Will cover in later classes

* Threading

— Client need multiple threads, so have >1 call
outstanding, match up replies to request

— Handler may be slow, server also need multiple
threads handling requests concurrently

RPC vs LPC

« 3 properties of distributed computing that
make achieving transparency difficult:
— Partial failures
— Latency
— Memory access

20

RPC Failures

Request from cli = srv lost
Reply from srv - cli lost
Server crashes after receiving request

Client crashes after sending request

Partial Failures

* In local computing:
— If machine fails, application fails

* In distributed computing:

— If a machine fails, part of application fails

— one cannot tell the difference between a
machine failure and network failure

 How to make partial failures transparent
to client?

22

Strawman Solution

« Make remote behavior identical to local
behavior:

— Every partial failure results in complete failure
* You abort and reboot the whole system

— You wait patiently until system is repaired

* Problems with this solution:
— Many catastrophic failures

— Clients block for long periods
« System might not be able to recover

23

RPC Exactly Once

* Impossible in practice

* Imagine that message triggers an
external physical thing

— E.g., a robot fires a nerf dart at the professor

* The robot could crash immediately
before or after firing and lose its state.
Don’t know which one happened. Can,
however, make this window very small.

24

RPC At Least Once

* Ensuring at least once

— Just keep retrying on client side until you get a
response.

— Server just processes requests as normal,
doesn’t remember anything. Simple!

 |s "at least once" easy for applications to
cope with?
— Only if operations are idempotent
— X=5 okay
— Bank -= $10 not okay

25

Possible semantics for RPC

At most once
— Zero, don’t know, or once

« Server might get same request twice...

* Must re-send previous reply and not process
request

— Keep cache of handled requests/responses
— Must be able to identify requests

— Strawman: remember all RPC IDs handled.
* Ugh! Requires infinite memory.

— Real Kee% sliding window of valid RPC IDs, have
client number them sequentially.

26

Implementation Concerns

As a general library, performance is often a big
concern for RPC systems

Major source of overhead: copies and
marshaling/unmarshaling overhead

Zero-copy tricks:

— Representation: Send on the wire in native format
and indicate that format with a bit/byte beforehand.
What does this do? Think about sending uint32
between two little-endian machines

— Scatter-gather writes (writev() and friends)

Dealing with Environmental
Differences

If my function does: read(foo, ...)

Can | make it look like it was really a local
procedure call??

Maybe!
— Distributed filesystem...
But what about address space?

— This is called distributed shared memory

— People have kind of given up on it - it turns out
often better to admit that you’re doing things
remotely

Summary:
Expose Remoteness to Client

 Expose RPC properties to client, since
you cannot hide them

* Application writers have to decide how
to deal with partial failures

— Consider: E-commerce application vs. game

29

Important Lessons

* Procedure calls
— Simple way to pass control and data
— Elegant transparent way to distribute application
— Not only way...

« Hard to provide true transparency
— Failures
— Performance
— Memory access

 How to deal with hard problem
— Give up and let programmer deal with it

Bonus Topic 1:
Sync vs. Async

Synchronous RPC

Client Wait for result

/

N\

Call remote Return
procedure from call
Request Reply
Server Call local procedure 1'me —»

and return results

The interaction between client and server
in a traditional RPC.

Asynchronous RPC

Client Wait for acceptance

s\ 4 \

Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

The interaction using asynchronous RPC

Asynchronous RPC

Wait for Interrupt client
acceptance
Client ___p____ \
/ \
Call remote Peturn -
rocedure rom call eturn
g results Acknowledge
Accept
Request request
Server --------------- N ——
Call local procedure \ Time —»
Call client with
one-way RPC

A client and server interacting through
two asynchronous RPCs.

Bonus Topic 2:
How Faste

Implementing RPC Numbers

Table I. Performance Results for Some Examples of Remote Calls

Procedure Minimum Median Transmission Local-only
no args/results 1059 1097 131 9
1 arg/result 1070 1105 142 10
2 args/results 1077 1127 152 11
4 args/results 11156 1171 174 12
10 args/results 1222 1278 239 17
1 word array 1069 1111 131 10
4 word array 1106 1153 174 13
10 word array 1214 1250 239 16
40 word array 1643 1695 566 51
100 word array 2915 2926 1219 98
resume except'n 25565 2637 284 134
unwind except’n 3374 3467 284 196

Results in microseconds

COPS RPC Numbers

Latency (ms)

System Operation 509 997, 99 97,
Thrift ping 0.26 3.62 12.25
COPS get_by_version 0.37 3.08 11.29
COPS-GT get_by_version 0.38 3.14 9.52

COPS put_after (1) 0.57 6.91 11.37
COPS-GT put_after (1) 0.91 5.37 7.37

COPS-GT put_after (130) 1.03 7.45 11.54

Bonus Topic 3:
Modern Feature Sets

Modern RPC features

RPC stack generation (some)
Many language bindings

No service binding interface
Encryption (some?)
Compression (some?)

Intermission

MapReduce

* Distributed Computation

Why Distributed Computations?

 How long to sort 1 TB on one computer?

— One computer can read ~30MBps from disk
* 33 000 secs => 10 hours just to read the data!

« Google indexes 100 billion+ web pages
— 100 * 1079 pages * 20KB/page = 2 PB

« Large Hadron Collider is expected to
produce 15 PB every year!

Solution: Use Many Nodes!

« Data Centers at Amazon/Facebook/Google

— Hundreds of thousands of PCs connected by high
speed LANs

* Cloud computing

— Any programmer can rent nodes in Data Centers for
cheap

 The promise:
— 1000 nodes = 1000X speedup

Distributed Computations are
Difficult to Program

Sending data to/from nodes
Coordinating among nodes
Recovering from node failure Same for
Optimizing for locality all problems
Debugging

MapReduce

« A programming model for large-scale
computations

— Process large amounts of input, produce output
— No side-effects or persistent state

 MapReduce is implemented as a runtime library:
— automatic parallelization
— load balancing
— locality optimization
— handling of machine failures

MapReduce design

 Map: extract information on each split

 Reduce: aggregate, summarize, filter or transform

More Specifically...

* Programmer specifies two methods:
— map(k, v) — <k', v'>*
— reduce(k', <v'>*) — <k, v'>*

* All v with same k' are reduced together

» Usually also specify:
— partition(k’ , total partitions) -> partition for k’
 often a simple hash of the key

« allows reduce operations for different k' to be
parallelized

Example: Count word
frequencies in web pages
* Input is files with one doc per record

 Map parses documents into words
— key = document URL
— value = document contents

* Qutput of map:

“doc1”, “to be or not to be™

Example: word frequencies
* Reduce: computes sum for a key

key = “be” key = “not” key = “or” key = “to”
values = “1”7, “17 values = “1” values=“1" values = “1”, “1”
“277 “1 ” “1 »y “2’,

* QOutput of reduce saved

“be”, “2”
“not”, “1 144
“or”, “1 144

“tO”, “2”

Example: Pseudo-code

Map (String input key, String input value):
//input key: document name
//input value: document contents
for each word w in input values:
EmitIntermediate(w, "1");

Reduce (String key, Iterator intermediate values):
//key: a word, same for input and output
//intermediate values: a list of counts
int result = 0;
for each v in intermediate values:

result += ParselInt (v):;
Emit (AsString(result));

MapReduce is widely applicable

* Distributed grep

 Document clustering

 Web link graph reversal

» Detecting duplicate web pages

MapReduce implementation

Input data is partitioned into M splits

Map: extract information on each split
— Each Map produces R partitions

Shuffle and sort
— Bring M partitions to the same reducer

Reduce: aggregate, summarize, filter or transform

Output is in R result files, stored in a replicated,
distributed file system (GFS).

MapReduce scheduling

* One master, many workers
— Input data split into M map tasks
— R reduce tasks
— Tasks are assigned to workers dynamically

 Assume 1000 workers, what’s a good
choice for M & R?
— M > #workers, R > #workers

— Master’s scheduling efforts increase with M &
R

* Practical implementation : O(M*R)

— E.g. M=100,000; R=2,000; workers=1,000

MapReduce scheduling

* Master assigns a map task to a free worker
— Prefers “close-by” workers when assigning task
— Worker reads task input (often from local disk!)
— Worker produces R local files containing intermediate
k/v pairs
* Master assigns a reduce task to a free worker

— Worker reads intermediate k/v pairs from map
workers

— Worker sorts & applies user’ s Reduce op to produce
the output

Parallel MapReduce

Input
data

T OO O O

Map Map Map Map
Master
Shuffle Shuffle Shuffle
Reduce Reduce Reduce S e
output

WordCount Internals
* Input data is split into M map jobs
« Each map job generates in R local partitions

” “ ” “ 77 ”

P\ “
o 0
5 ., “ 77 “1Wv
dOC1 y n ‘ ” “
“to be or not a “ \ i local
Ot partitions

to be” » ‘not”,“1”
t 1 (11 13/ “ ”
or, 1

“ ” “ 1”/v “d077,“1 77)
not” 11 7

“d00234”, “ n “ n\ “nOt”,“-l y > R local
“do not be silly” “be” “ j partitions
)

” “
SI||

WordCount Internals
« Shuffle brings same partitions to same reducer

“ton,“_l n,” ”” do] 1
“t(),’,“1 77,771 ”
“be” “1 ”
’ R local
“not”,“1” | partitions
“OI‘”, u1 ” “be”,“_l 77,771 ”

“don,“_l 7
“not”’“_l 77,”1 7

“be”,“.l ” R |Oca| “Or” “1 ”
partitions ’

“not”,“1 77

WordCount Internals

* Reduce aggregates sorted key values pairs

b) 4é ”
do’, 1
111 111 144
“to” “1 144 ”1 144 > do 3 1
b] (11 144 (11 144
to’, 2

“b ” “1 144 771 ” “b ” “277
e y y > e y

“not”,“1 ”,”1 7

11 7 “1 7
J

“not”,“2”

>« ” “1 ”
)

The importance of partition
function

- partition(k’, total partitions) ->
partition for k’
—e.g. hash(k’) % R

 What is the partition function for sort?

Load Balance and Pipelining

* Fine granularity tasks: many more map
tasks than machines

— Minimizes time for fault recovery
— Can pipeline shuffling with map execution

Process Time >

User Program [MapReduce() .. wait ...
Master Assign tasks to worker machines...
Worker | Map | Map 3

Worker 2 Map 2
Worker 3 Reduce |
Worker 4 Reduce 2

Fault tolerance via re-execution

On worker failure:

* Re-execute completed and in-progress
map tasks

* Re-execute in-progress reduce tasks

« Task completion committed through
master

On master failure:

» State is checkpointed to GFS: new
master recovers & continues

MapReduce Sort Performance

* 1TB (100-byte record) data to be sorted
* ~1800 machines
* M=15000 R=4000

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

MapReduce Sort Performance

Normal
20000 - Done:
839 s
10000 —
0 S B

0 200 400 600 80
20000 —

10000

0 | | | |

No backup tasks
20000 — Done:
1235 s
10000 —
0 | | | | | |

O 200 400 600 80
20000 —

10000

0 | | | |

When can shuffle start?

10000

100

0 200 400 600 800 10001200
Seconds

0

When can reduce start?

| | | | ! |

0 200 400 600 300 10001200

Seconds

200 processes killed

20000 — Done:
886 s
10000 -
oAl
VT T T[T 1
0 200 400 600 800[10001200
20000 —
10000 -
0 T T T T [T 1
0 200 400 600 00| 10001200
20000 —
10000 -
0 T T T T 1
0 200 400 600 800 10001200

Seconds

Input (MB/s)

Shuffle (MB/s)

MapReduce Sort Performance
(Normal Execution)

20000
15000 —
10000 —

5000

Done

20000
15000 —
10000 —

5000

———
500

AN

1000

500

1000

20000

15

¥

Output (MB/s)
=
o
1

10000 —

000 —

o

Ll v L] l

T
500 1000
Seconds

Effect of Backup Tasks

20000 - 20000 —
g 15000 — 15000 —
?25’ 10000 10000 -
£ 5000 5000 - P
© M[0 LT
500 1000 500 1000

Seconds Seconds

(a) Normal execution (b) No backup tasks

Avoid straggler using backup tasks

« Slow workers drastically increase completion time
— Other jobs consuming resources on machine
— Bad disks with soft errors transfer data very slowly
— Weird things: processor caches disabled ()
— An unusually large reduce partition

» Solution: Near end of phase, spawn backup copies
of tasks
— Whichever one finishes first "wins"

« Effect: Dramatically shortens job completion time

Refinements

 Combiner
— Partial merge of the results before transmission

— “Map-side reduce”
» Often code for combiner and reducer is the same

« Skipping Bad Records
— Signal handler catches seg fault/bus error
— Send “last gasp” udp packet to master

— If the master gets N “last gasp” for the same
record it marks it to be skipped on future
restarts

