
Wyatt Lloyd!
!
!

Some slides adapted from:!
Dave Andersen/Srini Seshan;!

Lorenzo Alisi/Mike Dahlin;!
Frans Kaashoek/Robert Morris/Nickolai Zeldovich;!

Jinyang Li;!
Jeff Dean;!

Advanced Distributed Systems�
�

RPCs & MapReduce

Remote Procedure Call (RPC)

•  Key question:!
– “What programming abstractions work well

to split work among multiple networked
computers?”!

Common Communication Pattern

Client!

Server!

Do Something!

Done / Response!

Work!

Alternative: Sockets

•  Manually format!
•  Send network packets directly!
	 struct	 foomsg	 {	
	 	 	 u_int32_t	 len;	
	 }	
	
	 send_foo(char	 *contents)	 {	
	 	 	 int	 msglen	 =	 sizeof(struct	 foomsg)	 +	 strlen(contents);	
	 	 	 char	 buf	 =	 malloc(msglen);	
	 	 	 struct	 foomsg	 *fm	 =	 (struct	 foomsg	 *)buf;	
	 	 	 fm-‐>len	 =	 htonl(strlen(contents));	
	 	 	 memcpy(buf	 +	 sizeof(struct	 foomsg),	
	 	 	 	 	 	 	 	 	 	 contents,	
	 	 	 	 	 	 	 	 	 	 strlen(contents));	
	 	 	 write(outsock,	 buf,	 msglen);	
	 }	

Remote Procedure Call (RPC)
•  Key piece of distributed systems machinery!

•  Goal: easy-to-program network communication!
–  hides most details of client/server communication!
–  client call is much like ordinary procedure call!
–  server handlers are much like ordinary procedures!

•  RPC is widely used!!
–  Google: Protobufs!
–  Facebook: Thrift!
–  Twitter: Finalge!

RPC Example
•  RPC ideally makes network communication look just

like a function call!

•  Client:!
" z = fn(x, y)!

•  Server:!
" fn(x, y) {!
" compute!
" return z!
" }!

!
•  RPC aims for this level of transparency!
•  Hope: even novice programmers can use function calls!!

RPC since 1983

RPC since 1983

What the programmer writes.!

RPC Interface

•  Uses interface definition language!
! service MultiplicationService
 {
 int multiply(int n1, int n2),
 }

 MultigetSliceResult multiget_slice(1:required list<binary> keys,
 2:required ColumnParent column_parent,
 3:required SlicePredicate predicate,
 4:required ConsistencyLevel consistency_level=ConsistencyLevel.ONE,
 99: LamportTimestamp lts)
 throws (1:InvalidRequestException ire, 2:UnavailableException ue,
3:TimedOutException te),

RPC Stubs
•  Generates boilerplate in specified language!

–  (Level of boilerplate varies, Thrift will generate servers in C++, …!

•  Programmer needs to setup connection and call generated function!

•  Programmer implements server side code!

	 $	 thrift	 -‐-‐gen	 go	 multiplication.thrift	

	 public	 class	 MultiplicationHandler	 implements	 MultiplicationService.Iface	 {	
	
	 public	 int	 multiply(int	 n1,	 int	 n2)	 throws	 TException	 {	

	 	 	 	 	 System.out.println("Multiply("	 +	 n1	 +	 ","	 +	 n2	 +	 ")");	
	 	 	 	 	 return	 n1	 *	 n2;	

	 }	

	 client	 =	 MultiplicationService.Client(…)	
	 client.multiply(4.5)	

RPC since 1983

Marshalling!

Marshalling
•  Format data into packets!
– Tricky for arrays, pointers, objects, ..!

•  Matters for performance!
– https://github.com/eishay/jvm-serializers/wiki!

Other Details
•  Binding!
– Client needs to find a server’s networking

address!
– Will cover in later classes!

•  Threading!
– Client need multiple threads, so have >1 call

outstanding, match up replies to request!
– Handler may be slow, server also need multiple

threads handling requests concurrently!

RPC vs LPC�
•  3 properties of distributed computing that

make achieving transparency difficult:!
– Partial failures!
– Latency!
– Memory access!

!

20!

RPC Failures!
•  Request from cli à srv lost!

•  Reply from srv à cli lost!

•  Server crashes after receiving request!

•  Client crashes after sending request!

!

Partial Failures
•  In local computing:!
–  if machine fails, application fails!

•  In distributed computing:!
–  if a machine fails, part of application fails!
– one cannot tell the difference between a

machine failure and network failure!

•  How to make partial failures transparent
to client?!

22!

Strawman Solution
•  Make remote behavior identical to local

behavior:!
– Every partial failure results in complete failure!

•  You abort and reboot the whole system!
– You wait patiently until system is repaired!

•  Problems with this solution:!
– Many catastrophic failures!
– Clients block for long periods!

•  System might not be able to recover!
!
! 23!

RPC Exactly Once !
•  Impossible in practice!

!
•  Imagine that message triggers an

external physical thing!
– E.g., a robot fires a nerf dart at the professor!

•  The robot could crash immediately
before or after firing and lose its state.
Don’t know which one happened. Can,
however, make this window very small.!

24!

RPC At Least Once !
•  Ensuring at least once!
–  Just keep retrying on client side until you get a

response.!
– Server just processes requests as normal,

doesn’t remember anything. Simple!!

•  Is "at least once" easy for applications to
cope with?!
– Only if operations are idempotent!
–  x=5 okay!
– Bank -= $10 not okay!

25!

Possible semantics for RPC!
•  At most once!

–  Zero, don’t know, or once!

•  Server might get same request twice…!

•  Must re-send previous reply and not process
request!
–  Keep cache of handled requests/responses!
–  Must be able to identify requests!
–  Strawman: remember all RPC IDs handled.!

•  Ugh! Requires infinite memory.!
–  Real: Keep sliding window of valid RPC IDs, have

client number them sequentially.!

26!

Implementation Concerns !
•  As a general library, performance is often a big

concern for RPC systems!

•  Major source of overhead: copies and
marshaling/unmarshaling overhead!

•  Zero-copy tricks:!
–  Representation: Send on the wire in native format

and indicate that format with a bit/byte beforehand.
What does this do? Think about sending uint32
between two little-endian machines!

–  Scatter-gather writes (writev() and friends)!

Dealing with Environmental
Differences!

•  If my function does: read(foo, ...)!
•  Can I make it look like it was really a local

procedure call??!
•  Maybe!!
– Distributed filesystem...!

•  But what about address space?!
– This is called distributed shared memory!
– People have kind of given up on it - it turns out

often better to admit that you’re doing things
remotely!

Summary: �
Expose Remoteness to Client !

•  Expose RPC properties to client, since
you cannot hide them!

•  Application writers have to decide how
to deal with partial failures!
– Consider: E-commerce application vs. game!

29!

Important Lessons
•  Procedure calls!

–  Simple way to pass control and data!
–  Elegant transparent way to distribute application!
–  Not only way…!

•  Hard to provide true transparency!
–  Failures!
–  Performance!
–  Memory access!

•  How to deal with hard problem!
–  Give up and let programmer deal with it!

Bonus Topic 1:�
Sync vs. Async

Synchronous RPC

The interaction between client and server
in a traditional RPC.!

Asynchronous RPC

The interaction using asynchronous RPC!

Asynchronous RPC

A client and server interacting through !
two asynchronous RPCs.!

Bonus Topic 2:�
How Fast?

Implementing RPC Numbers

Results in microseconds!

COPS RPC Numbers

Bonus Topic 3:�
Modern Feature Sets

Modern RPC features

•  RPC stack generation (some)!
•  Many language bindings!
•  No service binding interface!
•  Encryption (some?)!
•  Compression (some?)!

Intermission

MapReduce

•  Distributed Computation!

Why Distributed Computations?

•  How long to sort 1 TB on one computer?!
– One computer can read ~30MBps from disk!

•  33 000 secs => 10 hours just to read the data!!
!

•  Google indexes 100 billion+ web pages !
–  100 * 10^9 pages * 20KB/page = 2 PB!

•  Large Hadron Collider is expected to
produce 15 PB every year!!

Solution: Use Many Nodes!

•  Data Centers at Amazon/Facebook/Google!
–  Hundreds of thousands of PCs connected by high

speed LANs!

•  Cloud computing!
–  Any programmer can rent nodes in Data Centers for

cheap!

•  The promise:!
–  1000 nodes è 1000X speedup!

Distributed Computations are
Difficult to Program

•  Sending data to/from nodes!
•  Coordinating among nodes!
•  Recovering from node failure!
•  Optimizing for locality!
•  Debugging!

Same for !
all problems!

MapReduce
•  A programming model for large-scale

computations!
–  Process large amounts of input, produce output!
–  No side-effects or persistent state!

•  MapReduce is implemented as a runtime library:!
–  automatic parallelization!
–  load balancing!
–  locality optimization!
–  handling of machine failures!

MapReduce design

•  Input data is partitioned into M splits!
•  Map: extract information on each split !

–  Each Map produces R partitions!
•  Shuffle and sort!

–  Bring M partitions to the same reducer!
•  Reduce: aggregate, summarize, filter or transform!
•  Output is in R result files !

More Specifically…
• Programmer specifies two methods:!
–  map(k, v) → <k', v'>*!
–  reduce(k', <v'>*) → <k', v'>*!

• All v' with same k' are reduced together!

• Usually also specify:!
– partition(k’, total partitions) -> partition for k’!
•  often a simple hash of the key!
•  allows reduce operations for different k’ to be

parallelized!

Example: Count word
frequencies in web pages

•  Input is files with one doc per record!
•  Map parses documents into words!
– key = document URL!
– value = document contents!

•  Output of map:!

“doc1”, “to be or not to be”!
“to”, “1”!
“be”, “1”!
“or”, “1”!
…!

Example: word frequencies
•  Reduce: computes sum for a key!

•  Output of reduce saved!

“be”, “2”!
“not”, “1”!
“or”, “1”!
“to”, “2”!

key = “or”!
values = “1”!

“1”!

key = “be”!
values = “1”, “1”!

“2”!

key = “to”!
values = “1”, “1”!

“2”!

key = “not” !
values = “1”!

“1”!

Example: Pseudo-code
 Map(String input_key, String input_value):
 //input_key: document name
 //input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

!
 Reduce(String key, Iterator intermediate_values):
 //key: a word, same for input and output
 //intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

MapReduce is widely applicable
•  Distributed grep!
•  Document clustering!
•  Web link graph reversal!
•  Detecting duplicate web pages!
•  …!

MapReduce implementation

•  Input data is partitioned into M splits!
•  Map: extract information on each split !

–  Each Map produces R partitions!
•  Shuffle and sort!

–  Bring M partitions to the same reducer!
•  Reduce: aggregate, summarize, filter or transform!
•  Output is in R result files, stored in a replicated,

distributed file system (GFS).!

MapReduce scheduling
•  One master, many workers !
–  Input data split into M map tasks!
– R reduce tasks!
– Tasks are assigned to workers dynamically!

•  Assume 1000 workers, what’s a good
choice for M & R?!
– M > #workers, R > #workers!
– Master’s scheduling efforts increase with M &

R!
•  Practical implementation : O(M*R)!

– E.g. M=100,000; R=2,000; workers=1,000!

MapReduce scheduling

•  Master assigns a map task to a free worker !
–  Prefers “close-by” workers when assigning task!
–  Worker reads task input (often from local disk!)!
–  Worker produces R local files containing intermediate

k/v pairs!

•  Master assigns a reduce task to a free worker !
–  Worker reads intermediate k/v pairs from map

workers!
–  Worker sorts & applies user’s Reduce op to produce

the output !

Parallel MapReduce

Map Map Map Map

Input
data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

WordCount Internals
•  Input data is split into M map jobs!
•  Each map job generates in R local partitions!

“doc1”, !
“to be or not
to be”!

“to”, “1”!
“be”, “1”!
“or”, “1”!
“not”, “1!
“to”, “1”!

“be”,“1”!

“not”,“1”!
“or”, “1”!

R local!
partitions!

“doc234”, !
“do not be silly”!

“do”, “1”!
“not”, “1” !
“be”, “1”!
“silly”, “1! “be”,“1”!

R local!
partitions!

“not”,“1”!
“do”,“1”!

“to”,“1”,”1”!
Hash(“to”)

 % R!

WordCount Internals
•  Shuffle brings same partitions to same reducer!

“to”,“1”,”1”!

“be”,“1”!
“not”,“1” !
“or”, “1”!

“be”,“1”!

R local!
partitions!

R local!
partitions!

“not”,“1” !

“do”,“1”!

“to”,“1”,”1”!
“do”,“1”!

“be”,“1”,”1”!

“not”,“1”,”1”!
“or”, “1”!

WordCount Internals
•  Reduce aggregates sorted key values pairs!

“to”,“1”,”1”!
“do”,“1”!

“not”,“1”,”1”!
“or”, “1”!

“do”,“1”!
“to”, “2”!

“be”,“2”!

“not”,“2” !
“or”, “1”!

“be”,“1”,”1”!

The importance of partition
function

•  partition(k’, total partitions) ->
partition for k’!
– e.g. hash(k’) % R!

•  What is the partition function for sort?!

Load Balance and Pipelining
•  Fine granularity tasks: many more map

tasks than machines!
– Minimizes time for fault recovery!
– Can pipeline shuffling with map execution!
– Better dynamic load balancing!

•  Often use 200,000 map/5000 reduce
tasks w/ 2000 machines!

Fault tolerance via re-execution
On worker failure:!
•  Re-execute completed and in-progress

map tasks!
•  Re-execute in-progress reduce tasks!
•  Task completion committed through

master!

On master failure:!
•  State is checkpointed to GFS: new

master recovers & continues!
!

MapReduce Sort Performance

•  1TB (100-byte record) data to be sorted!
•  ~1800 machines!
•  M=15000 R=4000!

MapReduce Sort Performance

When can shuffle start?

When can reduce start?

MapReduce Sort Performance �
(Normal Execution)

Effect of Backup Tasks

Avoid straggler using backup tasks
•  Slow workers drastically increase completion time!

–  Other jobs consuming resources on machine!
–  Bad disks with soft errors transfer data very slowly!
–  Weird things: processor caches disabled (!!)!
–  An unusually large reduce partition!
!

•  Solution: Near end of phase, spawn backup copies
of tasks!
–  Whichever one finishes first "wins"!

•  Effect: Dramatically shortens job completion time!
!

Refinements
•  Combiner!
– Partial merge of the results before transmission!
–  “Map-side reduce”!

•  Often code for combiner and reducer is the same!

•  Skipping Bad Records!
– Signal handler catches seg fault/bus error!
– Send “last gasp” udp packet to master!
–  If the master gets N “last gasp” for the same

record it marks it to be skipped on future
restarts!

