
Wyatt Lloyd
Computer Science Department
35 Olden St.
Princeton, NJ 08540
(814) 880-1392
wlloyd@cs.princeton.edu

December 14, 2012

To Whom It May Concern:

I am seeking a tenure-track position as an assistant professor in your department. I am a Ph.D.
candidate in the Computer Science Department at Princeton University, and I expect to graduate
this year. My research interests include the distributed systems and networking problems that
underlie the architecture of large-scale websites, cloud computing, and big data.

I have enclosed my curriculum vitae with a list of references, research statement, teaching
statement, and four representative papers. The most up-to-date version of these materials is
available online at http://www.cs.princeton.edu/~wlloyd/application/.

I look forward to discussing my application with you.

Sincerely,

Wyatt Lloyd

encl: • Curriculum Vitae (including name of references)
• Research Statement
• Teaching Statement
• “Stronger Semantics for Low-Latency Geo-Replicated Storage”

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen
to appear in NSDI 2013, 14 pages (preprint)

• “Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS”
Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen
from SOSP 2011, 16 pages

• “Coercing Clients into Facilitating Failover for Object Delivery”
Wyatt Lloyd, Michael J. Freedman
from DSN 2011, 12 pages

• “Prophecy: Using History for High-Throughput Fault Tolerance”
Siddhartha Sen, Wyatt Lloyd, Michael J. Freedman
from NSDI 2010, 16 pages

http://www.cs.princeton.edu/~wlloyd/application/

Wyatt Lloyd
http://www.cs.princeton.edu/~wlloyd

205 Hudson St., Apt 601 wlloyd@cs.princeton.edu
Hoboken, N.J. 07030 (814) 880-1392

Education

Princeton University . Princeton, NJ
Ph.D. in Computer Science . Expected June 2013
M.A. in Computer Science . 2009
Advisor: Michael J. Freedman

Pennsylvania State University, University Park State College, PA
B.S. in Computer Science with distinction . 2007
Schreyer Honors College
Advisor: Thomas F. La Porta

Research Interests

The distributed systems and networking problems that underlie the architecture of
large-scale websites, cloud computing, and big data.

Dissertation

2010– Stronger Consistency and Semantics for Geo-Replicated Storage. Geo-replicated
storage systems provide the backend for massive-scale websites such as Twitter and
Facebook, storing data that includes your profile, friends lists, and status updates.
These storage systems seek to provide an “always-on” experience where operations
always complete quickly, because of a widely demonstrated link between page load
times, user engagement, and revenue. We term systems that can handle data of this
scale and provide the always-on experience ALPS systems, because they provide
four key properties—availability, low latency, partition tolerance, and scalability.

Our COPS [2] system is the first distributed data store to guarantee the ALPS prop-
erties and achieve consistency stronger than eventual. Eventual consistency spec-
ifies only that writes in one datacenter eventually show up in the others. Causal
consistency, which is what COPS provides, maintains the partial order over op-
erations establish by potential causality. Under causal consistency, all of a user’s
operations appear in the order they are issued and interactions between users, e.g.,
conversations in comments, appear in their correct order as well. This improve-
ment in consistency gives users a better experience and makes the data store easier
for programmers to reason about. A key technical contribution of the COPS work
is its fully distributed and scalable architecture that uses explicit metadata and off-
path dependency checks to enforce ordering instead of relying on any single point
of coordination.

Our Eiger [1] system further pushes on the semantics an ALPS data store can
provide. Eiger provides high-performance, guaranteed low-latency read-only and

1 / 5

http://www.cs.princeton.edu/~wlloyd

write-only transactions across the thousands of machines in a cluster. Read-only
transactions allow a client to observe a consistent snapshot of an entire cluster.
Write-only transactions allow clients to atomically write many values spread across
many servers at a single point in time. One important use case for write-only
transaction is maintaining symmetrical relationships, e.g., Alice “isAFriendOf” Bob
and Bob “isAFriendOf” Alice should both appear or disappear at the same time.
Eiger also improves the semantics of ALPS data stores by providing the column-
family data model—which is used in BigTable and Cassandra, and can be used to
built real applications like Facebook—instead of the key-value data model provided
by COPS—which is useful mainly as an opaque cache.

My dissertation research shows that ALPS systems do not need to settle for even-
tual consistency and weak semantics. Taken together, Eiger and COPS show that
causal consistency and stronger semantics are possible for low-latency geo-replicated
storage.

Other Research Experience

2009–2011 Low-Overhead Transparent Recovery for Static Content. Client connections to
web services break when the particular server they are connected to fails or is
taken down for maintenance. We designed and built TRODS [3], a system that
transparently recovers connections to web services that delivers static content, e.g.,
photos or videos. TRODS is implemented as a server-side kernel module for imme-
diate deployability, it works with unmodified services and clients. The key insight
in TRODS is its use of cross-layer visibility and control: It derives reliable storage
for application-level state from the mechanics of the transport layer. In contrast
with more general recovery techniques, the overhead of TRODS is minimal. It pro-
vides throughput-per-server competitive with unmodified HTTP services, enabling
recovery without additional capital expenditures.

2007–2010 Using History for High-Throughput Fault Tolerance. Byzantine fault-tolerant
(BFT) replication provides protection against arbitrary and malicious faults, but its
performance does not scale with cluster size. We designed and built Prophecy [4],
a system that interposes itself between clients and any replicated service to scale
throughput for read-mostly workloads. Prophecy relaxes consistency to delay-once
linearizability so it can perform fast, load-balanced reads when results are histori-
cally consistent, and slow, replicated reads otherwise. This dramatically increases
the throughput of replicated services, e.g., the throughput of a 4 node Prophecy
web service is ~4X the throughput of a 4 node PBFT web service.

2007 IP Address Passing for VANETs. In Vehicular Ad-hoc Networks (VANETs), ve-
hicles have short connection times when moving past wireless access points. The
time required for acquiring IP addresses via DHCP consumes a significant portion
of each connection. We reduce the connection time to under a tenth of a second
by passing IP addresses between vehicles. Our implementation improves efficiency,
reduces latency, and increases vehicle connectivity without modifying either DHCP
or AP software [5].

2 / 5

2006–2007 Multi-Class Overload Controls for SIP Servers. When SIP servers that are used
for signaling in VoIP network are overloaded, call-setup latency increases signifi-
cantly and critical calls—e.g., 911 calls—can be denied. My undergraduate thesis
on multi-class overload controls [6] reduces call latency by suppressing retransmis-
sions and prioritizes critical calls so they always connect.

Professional Experience

9/07– Research Assistant. Princeton University, Princeton, NJ
Major projects include providing stronger consistency for scalable storage systems
(COPS), providing stronger semantics for scalable storage systems (Eiger), enabling
transparent connection recovery for web services (TRODS), and using history for
high-throughput fault tolerance (Prophecy).

5/12–8/12 Ph.D. Intern. Facebook, New York, NY
Worked on a distributed-storage-systems team on a project to improve caching for
static content. Was the first intern at the new New York office.

6/10–9/10 Summer Research Fellow. Intel Labs Pittsburgh / CMU, Pittsburgh, PA
Began leading the COPS project, a collaborative effort between Princeton Univer-
sity, Intel Labs, and Carnegie Mellon University.

6/07–9/07 Intern-Student Engineer. The Boeing Company, Anaheim, CA
Worked on an internal research and development project on routing in multi-tier
wireless networks as part of the Network Systems group.

5/06–9/06 Intern-Student Engineer. The Boeing Company, Anaheim, CA
Worked on an internal research and development project that utilized DHCP for
intra-domain mobility management as part of the Network Systems group.

Teaching Experience

11/29/12 Guest Lecturer. Distributed Systems, (CMU) 15-440
Lectured on COPS to introduce cutting-edge research to undergraduates.

10/4/12 Guest Lecturer. Advanced Computer Networks, COS-561
Lectured on inter-domain routing with BGP and led a discussion of research papers
on network isolation and software-defined networking.

2/09–6/09 Teaching Assistant. Computer Networks, COS-461
Graded, held office hours, helped design exams, and taught exam-review sessions.

9/08–1/09 Teaching Assistant. General Computer Science, COS-126
Graded, held office hours, helped design exams, and taught twice-weekly recita-
tions.

Service

11/9/12 Panelist. Princeton Women in Computer Science Graduate School Panel
Shared experiences and advice about graduate school.

3 / 5

10/11– Regional Lead. Siebel Scholars Foundation
Organized events for Princeton region and served on the advisory board.

6/11–8/11 Student Advisor. Princeton Summer Programming Experience
Advised novice undergraduate programmers on 6-week-long projects.6/09–8/09

2/06–5/07 Student Representative. Penn State CSE Curriculum Committee
Helped shape undergraduate Computer Science curriculum.

Honors

2012 Wu Prize for Excellence (Princeton)
2012 Facebook Fellowship Finalist
2012 Siebel Scholar
2007 Princeton University Graduate Fellowship
2003-2007 Dean’s List (Penn State)
2003-2007 Schreyer Honors College Scholar (Penn State)
2006 College of Engineering General Scholarship (Penn State)
2003 Maryland State Distinguished Scholar
2002 National Merit Scholarship Honorable Mention
2000 Eagle Scout

Refereed Conference Publications

[1] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger Semantics for Low-Latency Geo-Replicated Storage. To appear in Proc.
10th Symposium on Networked Systems Design and Implementation (NSDI 13), April
2013. 14 pages.

[2] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. In Proc. 23rd ACM Symposium on Operating Systems Principles (SOSP 11),
October 2011. 16 pages.

[3] Wyatt Lloyd and Michael J. Freedman. Coercing Clients into Facilitating Failover
for Object Delivery. In Proc. 41st IEEE/IFIP International Conference on Dependable
Systems and Networks, Dependable Computing and Communication Symposium (DCCS)
track (DSN 11), June 2011. 12 pages.

[4] Siddhartha Sen, Wyatt Lloyd, and Michael J. Freedman. Prophecy: Using History
for High-Throughput Fault Tolerance. In Proc. 7th Symposium on Networked Systems
Design and Implementation (NSDI 10), April 2010. 16 pages.

[5] Todd Arnold, Wyatt Lloyd, Jing Zhao, and Guohong Cao. IP Address Passing
for VANETs. In Proc. 6th IEEE International Conference on Pervasive Computing and
Communications (PERCOM 08), March 2008. 10 pages.

4 / 5

Theses

[6] Wyatt Lloyd. Multi Class Overload Controls for SIP Servers. Honors Thesis, The
Pennsylvania State University, May 2007.

Refereed Conference Presentations

[7] Stronger Semantics for Low-Latency Geo-Replicated Storage. To appear at 10th
Symposium on Networked Systems Design and Implementation (NSDI 13), April 2013.

[8] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. In 23rd ACM Symposium on Operating Systems Principles (SOSP 11), October
2011.

[9] Coercing Clients into Facilitating Failover for Object Delivery. In 41st IEEE/IFIP
International Conference on Dependable Systems and Networks, Dependable Computing
and Communication Symposium (DCCS) track (DSN 11), June 2011.

Other Presentations

[10] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Facebook Ph.D. Intern and Distributed Systems Reading Group Talk, Au-
gust 2012.

[11] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Berkeley, Cloud Seminar, April 2012.

[12] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Intel Science and Technology Center on Cloud Computing Retreat, Research
Talk, December 2011.

[13] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. University of Maryland, SysChat Group Talk, October 2011.

[14] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Johns Hopkins University, Computer Science Seminar, October 2011.

References
Prof. Michael J. Freedman Prof. David G. Andersen
Assistant Professor Associate Professor
Computer Science Department Computer Science Department
Princeton University Carnegie Mellon University
mfreed@cs.princeton.edu dga@cs.cmu.edu

Dr. Michael Kaminsky Prof. Mike Dahlin
Senior Research Scientist Professor
ISTC for Cloud Computing Computer Science Department
Intel Labs The University of Texas at Austin
michael.e.kaminksy@intel.com dahlin@cs.utexas.edu

5 / 5

Research Statement
Wyatt Lloyd

Vision

My research addresses emerging problems in the massive-scale distributed systems that support
big data. The recent and dramatic growth in the demands on these systems—on their ability
to store, process, and manage large data volumes—makes this area ripe for new research. This
new scale, e.g., all of Twitter’s tweets, requires massively distributed systems with hundreds or
thousands or more machines cooperating to provide the necessary capacity and throughput.

To handle the magnitude of this data, recent systems from industry and academia have stressed
performance and scalability at the cost of strong semantic properties, e.g., linearizability and
transactions, yet these same properties make systems easier to use and understand. My research
questions whether such sacrifices are necessary and seeks to identify properties that make these
systems easier to program to and reason about that are compatible with massive scale. I pursue
properties that are rigorously defined for the clarity they bring to programmers using the systems,
e.g., causal consistency instead of eventual, or guaranteeing low latency for all operations.

Looking at my research from another direction, it reexamines conventional design decisions
and approaches given the new reality of big data. Centralized approaches that were simple,
straightforward, and effective in the small systems of the past quickly hit bottlenecks that prevent
scaling to the large systems of today. In contrast, I design systems that provide strong properties
while keeping all operations distributed, so they can scale to the even larger systems of tomorrow.

My focus on scalability is maintained throughout the research process; I include it as a primary
design requirement and then build prototypes that are tested with real data at scale. While
building and experimentally verifying that a design is scalable is useful and necessary in itself, I
have also found that doing so often exposes unanticipated bottlenecks and can reveal important
new research topics, as discussed in my future directions. This focus on designing and building
massive-scale systems that provide strong, rigorous properties defines my niche as a researcher.

Dissertation Research

Geo-replicated storage systems provide the backend for massive-scale websites like Facebook,
storing data that includes your profile, friends list, and status updates. These storage systems
seek to provide an “always-on” experience where operations always complete quickly, because
of a widely demonstrated link between page load times, user engagement, and revenue. We
term systems that can handle such data at scale and provide an always-on experience as ALPS
systems, because they provide four key properties: Availability, Low latency, Partition tolerance,
and Scalability.

Previous ALPS systems such as Amazon’s Dynamo, LinkedIn’s Project Voldemort, and
Facebook’s Cassandra (in some configurations) all made large usability sacrifices in pursuit of
their scale and performance goals. These sacrifices—such as providing only eventual consistency,
which gives no ordering guarantees about operations—make it hard for programmers to reason
about the system and result in an end-user experience that is far from ideal. My dissertation
research shows that these sacrifices are not fundamental; stronger consistency and semantics are
achievable for ALPS storage systems.

1 / 4

Yet, known theoretical results show that low latency and the strongest types of consistency are
incompatible.1 Knowing this, the recent spate of low-latency geo-replicated systems settled for
the weakest semantic property, eventual consistency. The first part of my dissertation research,
COPS, shows that this sacrifice is not necessary. COPS is the first ALPS system to provide causal
consistency, a middle ground between the two extremes where operations always appear in an
order consistent with potential causality, e.g., all of a user’s operations and all conversations be-
tween users appear in their original order. This improvement in consistency makes the distributed
storage more intuitive for programmers to use and gives end users more of the experience they
expect.

One key technical contribution in COPS is a design focused on the scalability of clusters
where the keyspace is partitioned across nodes, replication is done in parallel from all nodes
in each cluster, and then nodes use dependency metadata associated with the updates to issue
distributed checks that ensure operations are always applied in the correct causal order. Naively,
dependency metadata grows exponentially and throttles performance. COPS avoids this problem
using multiple types of garbage collection and by exploiting the transitive structure inherent in
the graph of potential causality.

COPS’s use of distributed metadata runs counter to the traditional wisdom for enforcing
causal consistency, which was to exchange logs of operations and then replay them at other
locations. The log-exchange approach works well and admits a simple implementation when all
data can reside on a single machine. With the new realities of massive scale where data is spread
across many machines, however, the log-exchange approach breaks down as logging updates to
all machines in a cluster into one place becomes a bottleneck. In contrast, because of COPS’s
distributed design, it is the first scalable and causally consistent system.

The big data in ALPS systems is spread across thousands of nodes, yet previous systems provided
only inconsistent batch operations to read and write data across multiple nodes. Eiger, the second
part of my dissertation research, shows that much stronger semantics are possible. These stronger
semantics include read-only and write-only transactions that consistently read or write data
spread across all the nodes in a cluster. Eiger’s semantics also include counter columns and the
hierarchical column-family data model used in BigTable and Cassandra, which makes building
applications atop it much simpler. The limited transactions and rich data model in Eiger do not
come at the expense of high scalability or performance, and designing the system to ensure this
was one of Eiger’s main challenges.

In particular, to guarantee low latency Eiger must eschew locks and blocking, the typical
techniques used for transactions. And to enable scaling it must avoid the centralization that is
also typical for transactions. Eiger overcomes both these challenges using distributed algorithms
that utilize logical-time-validity metadata and temporarily maintaining multiple versions of the
data. In addition, its algorithms for read-only and write-only transactions are designed to work
together using indirection to ensure that clients obtain a consistent, up-to-date view of the system
and can atomically update data spread across many nodes.

My dissertation research shows that ALPS systems do not need to settle for eventual consistency
and weak semantics. Taken together, Eiger and COPS show that causal consistency and stronger
semantics are possible for low-latency geo-replicated storage.

1This incompatibility is an implication of Brewer’s famed CAP theorem from 2000, which was formalized shortly
after by Gilbert and Lynch. Its first proof, however, was a lesser-known result from 1988 by Lipton and Sandberg.

2 / 4

Future Directions

Fully-Distributed General Transactions

While working on transactional algorithms for the low-latency geo-replicated setting of COPS and
Eiger, I began to design algorithms for fully-distributed general transactions. General transactions
are widely recognized as easy for programmers to reason about and necessary for certain scenarios,
e.g., banking. Due to the fundamental trade-off between strong consistency and low latency, they
are hard to reason about in—and perhaps incompatible with—the geo-replicated and low-latency
setting of COPS and Eiger. They are, however, compatible with a low-latency single-datacenter
setting or with a non-low-latency geo-replicated setting.

Currently, transactions are either scalable or general, but not both. My research and Google’s
recent work on Spanner, which provides read-once-then-write transactions, are examples of the
former. On the other hand, examples of the latter include traditional databases with general
transactions that are restricted to a small subset (shard) of the data and/or are scheduled by a
master node. Developing and verifying fully-distributed transactions across large numbers of
nodes will bridge this divide and provide scalability for general transactions.

Scalable Transport for Massively-Distributed Systems

Current transport-layer protocols, e.g., TCP and UDP, are ill-suited for massive-scale distributed
systems. TCP was designed to provide a reliable stream of data between two machines; UDP was
designed to provide unreliable datagrams in the same setting. In contrast, the communication pat-
terns of massive-scale distributed systems typically have large numbers of parallel, asynchronous
RPCs between many machines.

One example of this mismatch is that while running experiments for Eiger with hundreds of
nodes, I found I could not achieve perfect linear scaling of throughput as cluster size increased due
to the overhead from the increasing number of TCP connections on each node. As another example,
I’ve learned from industrial colleagues that it is common practice to aggregate connections from
multiple processes on the same machine to reduce connection overhead and to increase batching.
Yet another example is Facebook’s modification to memcached that uses TCP for writes, but uses
UDP for reads so they can build their own retransmission protocol atop it that is aware of how
they batch reads (multigets).

All of these issues stem from a mismatch between what current transport layers provide and
how massive-scale distributed systems communicate. While there has been much recent work on
improving TCP for datacenter usage—e.g., DCTCP that improves congestion control, or the entire
“Data Centers: Latency” session at SIGCOMM 2012 that improved flow completion times—a more
fundamental approach is necessary and possible. Datacenter services provide a rare opportunity
to deploy a clean-slate transport layer because they are in a single administrative domain and can
be upgraded en masse. Along with networking colleagues, I am interested in exploring what new
transport layer properties, abstractions, and mechanisms can better match the performance or
programmability requirements of massive-scale distributed systems.

Making Programming Distributed Storage Make Sense

Strong consistency and general transactions, while incompatible with low-latency geo-replication,
are well understood by programmers and easier for them to reason about than weaker consistency
and limited transactions. My dissertation research starts to bridge this gap, but there is still much
to do before programming massive-scale distributed storage truly “makes sense.”

This introduces two exciting avenues of research. One is, how can we make it easier for

3 / 4

programmers to reason about and use low-latency primitives? My current approach has been to
make the primitives as strong as possible and I believe this direction will bear more fruit. But, we
will also need ways to make it easier for programmers to express themselves. Perhaps a query
language will help? Or, a compiler that will deconstruct general transactions into limited ones?

The other avenue of research is, how can we present a single interface that is simple for
programmers to reason about that provides access to strong-but-slow general transactions and
fast-but-weaker limited transactions? Should transactions and their results be typed so we can
reason about their use throughout a program? Would a domain-specific language help? Can we
allow programmers to write the simplest code initially and then only specialize it if dictated by
performance?

Each of these avenues provides an interesting mix of programming languages and distributed
systems problems. I look forward to collaborating on them with PL colleagues and I believe
solving them will have a large and lasting impact on the way web services are built and the way
programmers interact with big data.

In the last 20 years the field of distributed systems has changed dramatically. The field moved
from systems on the order of 10s of nodes in one administrative domain, to peer-to-peer systems
with 1000s of nodes in many administrative domains, to datacenter services with a small number
of datacenters each with 1000s of nodes within it that are back in a single administrative domain.
With billions of edge devices that are increasingly capable, I am intrigued to see how they fit into
the distributed systems of the future.

Increasingly, distributed systems problems have connections to networking, databases, pro-
gramming languages, algorithms, and security. I look forward to working with colleagues in these
areas in my future research career, as I believe that many of the most productive types of research
come from inter-area collaboration.

4 / 4

Teaching Statement
Wyatt Lloyd

Teaching is an important and exciting part of being a faculty member. I look forward to
being involved in teaching at all levels, from sparking student interest in Computer Science in
introductory courses to advising students pursuing their own research. I am qualified to teach
introductory CS classes and particularly qualified to teach classes on systems and networking at
the undergraduate level, the advanced/graduate level, and in seminars on more focused topics
like distributed storage systems or datacenter networking.

I first gained teaching experience as a TA for Princeton’s introductory course (COS 126).
My favorite part of the course was teaching a twice-weekly precept to my section of about a
dozen students. I focused on being enthusiastic about the material and keeping the class highly
interactive. I believe the more you involve students and show them the interesting facets of a
subject, the more they will be motivated to learn.

I also served as a TA for Princeton’s networking course at the advanced undergraduate level
(COS 461). The course had a strong focus on projects where the students built what we were
learning about in class, e.g., a lightweight TCP implementation. This focus on building helped
students understand the material more deeply, actively engaged them in the subject, and provided
them with practical system building experience. The core parts of course were supplemented with
discussions of recent research advancements, showing students our field is still evolving and that
they can have an impact. This inspired several students to do research with our group, some of
whom ultimately went to graduate school in systems and networking. The effectiveness of the
class greatly impressed me, and I will incorporate a focus on building and discussion of research
results into any advanced systems or networking course I teach.

Graduate courses offer an in-depth look at a topic and are an excellent vehicle for initiating
research. I have found the format of lectures on a topic, followed by reading related papers, and
then finally working on a research project to be a successful strategy. Lectures ensure a basic level
of knowledge so that papers are accessible and framed by current and historical practices. Paper
readings and discussions allow much more depth in exploring a topic as well as help students
learn how to best focus their work and its exposition for maximum impact. This fall I had the
privilege to guest teach the graduate level advanced networking class (COS 561) where I delivered
a lecture with my enthusiastic and interactive style, followed by a discussion of two papers the
students had read. This experience, combined with my earlier experience as a TA, confirmed that
I enjoy and excel at teaching all levels of courses.

Research projects are an essential part of graduate courses because they give students the
opportunity to explore a topic in greater depth, enabling them to make a potentially publishable
contribution of their own. This is, in fact, how I published my first paper. An aspect of student
projects that I will emphasize is building a prototype and experimentally verifying its design. I
consider this an essential component of research in systems as it grounds their work in reality,
gives them system-building experience, helps them focus on what is novel about their design, and
can lead them to new areas of research.

I have advised one undergraduate on a semester-long research project and three other under-
graduates on six-week summer projects. In each case, the experience was rewarding and I look
forward to longer-term advisement of graduate students. I view advisement as a tremendous
opportunity, and responsibility, to guide students down worthwhile paths without stifling their
individuality or creativity. I am particularly excited to see how long-term collaboration will merge
my ideas with those of my students into new research directions.

1 / 1

