Baseball Elimination
(hockey and basketball too)

Kevin Wayne
Princeton University

www.cs.princeton.edu/~wayne
The Problem

<table>
<thead>
<tr>
<th>team</th>
<th>wins w_i</th>
<th>losses l_i</th>
<th>to play r_i</th>
<th>against $= r_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>83</td>
<td>71</td>
<td>8</td>
<td>Atl 1 Phi 6 NY 1</td>
</tr>
<tr>
<td>Philly</td>
<td>80</td>
<td>79</td>
<td>3</td>
<td>1 0 2</td>
</tr>
<tr>
<td>New York</td>
<td>78</td>
<td>78</td>
<td>6</td>
<td>6 0 0 0</td>
</tr>
<tr>
<td>Montreal</td>
<td>77</td>
<td>82</td>
<td>3</td>
<td>1 2 0 0</td>
</tr>
</tbody>
</table>

Which teams have a chance of finishing season with most wins?

- Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83

- $w_i + r_i < w_j \Rightarrow$ team i eliminated
- only reason sports writers appear aware of
- sufficient reason for elimination, but not necessary
The Problem

<table>
<thead>
<tr>
<th>team</th>
<th>wins w_i</th>
<th>losses l_i</th>
<th>to play r_i</th>
<th>against $= r_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>83</td>
<td>71</td>
<td>8</td>
<td>– 1 6 1</td>
</tr>
<tr>
<td>Philly</td>
<td>80</td>
<td>79</td>
<td>3</td>
<td>1 – 0 2</td>
</tr>
<tr>
<td>New York</td>
<td>78</td>
<td>78</td>
<td>6</td>
<td>6 0 – 0</td>
</tr>
<tr>
<td>Montreal</td>
<td>77</td>
<td>82</td>
<td>3</td>
<td>1 2 0 –</td>
</tr>
</tbody>
</table>

Which teams have a chance of finishing season with most wins?

- Philly can win 83, but still eliminated . . .
 - if Atlanta loses a game, then some other teams wins one

Answer depends not just on how many games already won and left to play, but also on who they’re against.
History

- first popularized by Alan Hoffman in 1960’s
- standard textbook application of optimization

Schwartz ’66 determine whether one particular team is eliminated using 1 max flow

Hoffman-Rivlin ’67 necessary and sufficient conditions for team to be eliminated from \(t \)-th place

Gusfield-Martel ’92, McCormick ’96 first-place elimination number for one particular team using 1 parametric max flow

Adler, Erera, Hochbaum, Olinick all first-place and playoff elimination numbers using LP – riot.ieor.berkeley.edu
Main Results

• Surprising structural property
 – problem not as difficult as many mathematicians would have you believe

• Find all eliminated teams and 1st-place elimination numbers
 – same asymptotic complexity as 1 max flow
 – previous approach: 1 separate max flow for each team
 – factor n speedup ($n = \# \text{ teams}$)
Classic Max Flow Formulation

Can team 3 finish with most wins?

- Assume team 3 wins all remaining games \(\Rightarrow w_3 + r_3 \) wins
- Divvy remaining games so all teams have \(\leq w_3 + r_3 \) wins

Theorem [Schwartz ’66]: Team 3 not eliminated iff max flow saturates all arcs leaving source.
Reason for Elimination (for sports writers)

<table>
<thead>
<tr>
<th>team</th>
<th>wins w_i</th>
<th>losses l_i</th>
<th>to play r_i</th>
<th>against $= r_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>75</td>
<td>59</td>
<td>28</td>
<td>NY</td>
</tr>
<tr>
<td>Baltimore</td>
<td>71</td>
<td>63</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>Boston</td>
<td>69</td>
<td>66</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>Toronto</td>
<td>63</td>
<td>72</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>Detroit</td>
<td>49</td>
<td>86</td>
<td>27</td>
<td>3</td>
</tr>
</tbody>
</table>

AL East: August 30, 1996

- Detroit could finish season with $49 + 27 = 76$ wins
- Consider $R = \{NY, Bal, Bos, Tor\}$
 - have already won $w(R) = 278$ games
 - must win at least $r(R) = 27$ more
 - \Rightarrow average team in R wins at least $305/4 = 76\frac{1}{4}$ games

Kevin Wayne
Always a Certificate of Elimination

\[R \subseteq N, \quad w(R) := \sum_{i \in R} w_i, \quad r(R) := \frac{1}{2} \sum_{i,j \in R} r_{ij} \]

LB on avg # games won

\[a(R) := \frac{w(R) + r(R)}{|R|} \]

If \(a(R) > w_i + r_i \) then \(i \) is eliminated (by \(R \))

Theorem [Hoffman-Rivlin ’67]: Team \(i \) is eliminated iff \(\exists R \) that eliminates \(i \).

\[\Rightarrow \quad R = \text{team nodes on sink side of min cut} \]
Surprising New Structural Property

<table>
<thead>
<tr>
<th>team</th>
<th>wins w_i</th>
<th>losses l_i</th>
<th>to play r_i</th>
<th>win % $w_i/(w_i + l_i)$</th>
<th>order $w_i + r_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>83</td>
<td>71</td>
<td>8</td>
<td>.539</td>
<td>91</td>
</tr>
<tr>
<td>New York</td>
<td>78</td>
<td>78</td>
<td>6</td>
<td>.500</td>
<td>84</td>
</tr>
<tr>
<td>Philly</td>
<td>80</td>
<td>79</td>
<td>3</td>
<td>.503</td>
<td>83</td>
</tr>
<tr>
<td>Montreal</td>
<td>77</td>
<td>82</td>
<td>3</td>
<td>.481</td>
<td>80</td>
</tr>
</tbody>
</table>

Property: team j eliminated and $w_i + r_i \leq w_j + r_j \Rightarrow$ i also eliminated.

[proved independently by Adler, Erera, Hochbaum, Olinick ’98 using LP]

- we prove using flows and cuts \Rightarrow faster algorithm
- extended by Gusfield-Martel to soccer, but no algorithm
Analysis and Consequences

Property: team j eliminated and $w_i + r_i \leq w_j + r_j \Rightarrow i$ also eliminated.

- j eliminated $\Rightarrow \exists R$ s.t. $a(R) > w_j + r_j \geq w_i + r_i$
- $i \notin R \Rightarrow R$ eliminates i trivially
- $i \in R \Rightarrow R \setminus \{i\}$ eliminates i

Corollary: $\exists T$ s.t. i eliminated $\iff w_i + r_i < T$.

- threshold T determines all eliminated teams
- can binary search among n values for threshold $T \Rightarrow$ can determine all eliminated teams with $\log n$ max flows
- use parametric max flow to find $T \Rightarrow$ same asymptotic complexity as 1 preflow-push max flow . . .
Parametric Max Flow Formulation

Find outcome in which no team finishes with more than T wins

Goal: find smallest (fractional) value T for which max flow saturates all source arcs

- use [GGT ’93] to find min cut for all values of T
- min cut for T^* gives R that maximizes $a(R) = \frac{w(R)+r(R)}{|R|}$
Special Case: Max Density Subgraph

Find subgraph whose ratio of number of internal arc to nodes is maximum.

- create baseball league with \(w \equiv 0, \ r \equiv 1 \)
 \[\Rightarrow \text{ max density subgraph problem}\]

\[
a(R^*) := \max_{R \subseteq N} \left\{ \frac{w(R) + r(R)}{|R|} \right\}, \quad w(R) = \sum_{i \in R} w_i, \quad r(R) = \frac{1}{2} \sum_{i,j \in R} r_{ij}
\]
Conclusions

- Find all eliminated teams in same complexity as 1 max flow
 - factor n speedup

- Threshold property for baseball elimination
 - elimination ordering: wins + remaining games
 - if teams have played same number of games, then “sportswriter ordering” is same as “elimination ordering”

- Dual of our problem is generalization of max density subgraph problem