Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.
13.1 Contention Resolution
Contention Resolution in a Distributed System

Contention resolution. Given \(n \) processes \(P_1, \ldots, P_n \), each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Contestation Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with probability $p = 1/n$.

Claim. Let $S[i, t]$ = event that process i succeeds in accessing the database at time t. Then $1/(e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n)$.

Pf. By independence, $\Pr[S(i, t)] = p (1-p)^{n-1}$.

- Setting $p = 1/n$, we have $\Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$.

Useful facts from calculus. As n increases from 2, the function:

- $(1 - 1/n)^n$ converges monotonically from $1/4$ up to $1/e$
- $(1 - 1/n)^{n-1}$ converges monotonically from $1/2$ down to $1/e$.
Contestation Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most 1/e. After e · n(c ln n) rounds, the probability is at most n^c.

Pf. Let F[i, t] = event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have Pr[F(i, t)] ≤ (1 - 1/(en))^t.

- Choose t = [e · n]: Pr[F(i, t)] ≤ (1 - 1/en)^[en] ≤ (1 - 1/en)^en ≤ 1/e
- Choose t = [e · n] [c ln n]: Pr[F(i, t)] ≤ (1/e)^c ln n = n^c
Contestion Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at least $1 - 1/n$.

Pf. Let $F[t]$ = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i, t]\right] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^t$$

- Choosing $t = 2 \lceil en \rceil \lceil c \ln n \rceil$ yields $\Pr[F[t]] \leq n \cdot n^{-2} = 1/n$.

Union bound. Given events E_1, \ldots, E_n,

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] \leq \sum_{i=1}^{n} \Pr[E_i]$$
13.2 Global Minimum Cut
Global Minimum Cut

Global min cut. Given a connected, undirected graph $G = (V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.
Contraction Algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2.
- Return the cut (all nodes that were contracted to form v_1).
Claim. The contraction algorithm returns a min cut with prob $\geq \frac{2}{n^2}$.

Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^*. Let $k = |F^*| = $ size of min cut.
- In first step, algorithm contracts an edge in F^* probability $k / |E|$.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be min-cut. $\Rightarrow |E| \geq \frac{1}{2}kn$.
- Thus, algorithm contracts an edge in F^* with probability $\leq \frac{2}{n}$.

![Diagram](image-url)
Claim. The contraction algorithm returns a min cut with prob \(\geq \frac{2}{n^2} \).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G\). Let \(F^*\) be edges with one endpoint in \(A^*\) and the other in \(B^*\). Let \(k = |F^*| = \text{size of min cut} \).

- Let \(G'\) be graph after \(j\) iterations. There are \(n' = n - j\) supernodes.
- Suppose no edge in \(F^*\) has been contracted. The min-cut in \(G'\) is still \(k\).
- Since value of min-cut is \(k\), \(|E'| \geq \frac{1}{2}kn'\).
- Thus, algorithm contracts an edge in \(F^*\) with probability \(\leq \frac{2}{n'} \).

Let \(E_j = \text{event that an edge in } F^* \text{ is not contracted in iteration } j\).

\[
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}]
\geq \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\cdots\left(1 - \frac{2}{4}\right)\left(1 - \frac{2}{3}\right)
= \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)
= \frac{2}{n(n-1)}
\geq \frac{2}{n^2}
\]
Contraction Algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1/n^2$.

Pf. By independence, the probability of failure is at most

$$
\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \leq \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}
$$

$$
(1 - 1/x)^x \leq 1/e
$$
Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

\[\text{faster than best known max flow algorithm or deterministic global min cut algorithm}\]
13.3 Linearity of Expectation
Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$$

\[\uparrow \quad \uparrow \]

j-1 tails 1 head
Expectation: Two Properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Pf.

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]
\]

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Decouples a complex calculation into simpler pieces.
Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = $ number of correct guesses $= X_1 + \ldots + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/n = 1$. □

↑

linearity of expectation
Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.
- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / (n - i - 1)$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n)$.

\[\ln(n+1) < H(n) < 1 + \ln n\]
Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are \(n \) different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \(\geq 1 \) coupon of each type?

Claim. The expected number of steps is \(\Theta(n \log n) \).

Pf.
- Phase \(j \) = time between \(j \) and \(j+1 \) distinct coupons.
- Let \(X_j \) = number of steps you spend in phase \(j \).
- Let \(X = \) number of steps in total = \(X_0 + X_1 + \ldots + X_{n-1} \).

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]

\[
\text{prob of success} = \frac{n-j}{n}
\]

\(\Rightarrow \) expected waiting time = \(n/(n-j) \)
13.4 MAX 3-SAT
Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
\begin{align*}
C_1 &= x_2 \lor \overline{x}_3 \lor \overline{x}_4 \\
C_2 &= x_2 \lor x_3 \lor \overline{x}_4 \\
C_3 &= \overline{x}_1 \lor x_2 \lor x_4 \\
C_4 &= \overline{x}_1 \lor \overline{x}_2 \lor x_3 \\
C_5 &= x_1 \lor \overline{x}_2 \lor x_4
\end{align*}
\]

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability \(\frac{1}{2}\), independently for each variable.
Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7k/8$.

Pf. Consider random variable $Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$

- Let $Z = \text{weight of clauses satisfied by assignment } Z_j$.

\[
E[Z] = \sum_{j=1}^{k} E[Z_j] \\
\text{linearity of expectation} \\
= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}] \\
= \frac{7}{8} k
\]
Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. □

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!
Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least $1/(8k)$.

Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

$$\frac{7}{8}k = E[Z] = \sum_{j=0} \ j \ p_j$$

$$= \sum_{j<7k/8} j \ p_j + \sum_{j\geq7k/8} j \ p_j$$

$$\leq \left(\frac{7k}{8} - \frac{1}{8} \right) \sum_{j<7k/8} p_j + k \sum_{j\geq7k/8} p_j$$

$$\leq \left(\frac{7}{8} k - \frac{1}{8} \right) \cdot 1 + \ k \ p$$

Rearranging terms yields $p \geq 1 / (8k)$. □
Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson's algorithm is a $7/8$-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least $1/(8k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8k$. □
Maximum Satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho > 7/8$.

very unlikely to improve over simple randomized algorithm for MAX-3SAT
Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.
RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Fundamental open questions. To what extent does randomization help?
- Does $P = ZPP$?
- Does $ZPP = RP$?
- Does $RP = NP$?

Can decrease probability of false negative to 2^{-100} by 100 independent repetitions

running time can be unbounded, but on average it is fast
13.6 Universal Hashing
Dictionary Data Type

Dictionary. Given a universe \(U \) of possible elements, maintain a subset \(S \subseteq U \) so that inserting, deleting, and searching in \(S \) is efficient.

Dictionary interface.
- **Create()**: Initialize a dictionary with \(S = \emptyset \).
- **Insert(u)**: Add element \(u \in U \) to \(S \).
- **Delete(u)**: Delete \(u \) from \(S \), if \(u \) is currently in \(S \).
- **Lookup(u)**: Determine whether \(u \) is in \(S \).

Challenge. Universe \(U \) can be extremely large so defining an array of size \(|U| \) is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.
Hashing

Hash function. \(h : U \rightarrow \{ 0, 1, ..., n-1 \} \).

Hashing. Create an array \(H \) of size \(n \). When processing element \(u \), access array element \(H[h(u)] \).

Collision. When \(h(u) = h(v) \) but \(u \neq v \).

- A collision is expected after \(\Theta(\sqrt{n}) \) random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: \(H[i] \) stores linked list of elements \(u \) with \(h(u) = i \).
Ad Hoc Hash Function

Ad hoc hash function.

```java
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?
Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.
Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.
- Running time depends on length of chains.
- Average length of chain $= \alpha = m / n$.
- Choose $n \approx m \Rightarrow$ on average $O(1)$ per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

\[\text{adversary knows the randomized algorithm you're using, but doesn't know random choices that the algorithm makes} \]
Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]

- For any pair of elements $u, v \in U$, $\Pr_{h \in H}[h(u) = h(v)] \leq 1/n$
- Can select random h efficiently.
- Can compute $h(u)$ efficiently.

Ex. $U = \{ a, b, c, d, e, f \}$, $n = 2$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(x)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$h_2(x)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$H = \{ h_1, h_2 \}$

- $\Pr_{h \in H}[h(a) = h(b)] = 1/2$
- $\Pr_{h \in H}[h(a) = h(c)] = 1$
- $\Pr_{h \in H}[h(a) = h(d)] = 0$

... not universal

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(x)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$h_2(x)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$h_3(x)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$h_4(x)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$H = \{ h_1, h_2, h_3, h_4 \}$

- $\Pr_{h \in H}[h(a) = h(b)] = 1/2$
- $\Pr_{h \in H}[h(a) = h(c)] = 1/2$
- $\Pr_{h \in H}[h(a) = h(d)] = 1/2$
- $\Pr_{h \in H}[h(a) = h(e)] = 1/2$
- $\Pr_{h \in H}[h(a) = h(f)] = 0$

... universal
Universal Hashing

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Pf. For any element $s \in S$, define indicator random variable $X_s = 1$ if $h(s) = h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \cdot \frac{1}{n} \leq 1$$

- linearity of expectation
- X_s is a 0-1 random variable
- universal (assumes $u \notin S$)
Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between \(n \) and \(2n \).

Modulus. Choose a prime number \(p \approx n \). ← no need for randomness here

Integer encoding. Identify each element \(u \in U \) with a base-\(p \) integer of \(r \) digits: \(x = (x_1, x_2, ..., x_r) \).

Hash function. Let \(A = \) set of all \(r \)-digit, base-\(p \) integers. For each \(a = (a_1, a_2, ..., a_r) \) where \(0 \leq a_i < p \), define

\[
 h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p
\]

Hash function family. \(H = \{ h_a : a \in A \} \).
Designing a Universal Class of Hash Functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal class of hash functions.

Pf. Let $x = (x_1, x_2, \ldots, x_r)$ and $y = (y_1, y_2, \ldots, y_r)$ be two distinct elements of U. We need to show that $\Pr[h_a(x) = h_a(y)] \leq 1/n$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- We have $h_a(x) = h_a(y)$ iff
 \[
 \sum_{i \neq j} a_i (x_i - y_i) \mod p = a_j (y_j - x_j) \mod p
 \]
 \[
 \sum m
 \]

 - Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.
 - Since p is prime, $a_j z = m \mod p$ has at most one solution among p possibilities. \[\text{see lemma on next slide}\]
 - Thus $\Pr[h_a(x) = h_a(y)] = 1/p \leq 1/n$. \[\text{\hfill } \blacksquare\]
Number Theory Facts

Fact. Let p be prime, and let $z \neq 0 \mod p$. Then $\alpha z = m \mod p$ has at most one solution $0 \leq \alpha < p$.

Pf.
- Suppose α and β are two different solutions.
- Then $(\alpha - \beta)z = 0 \mod p$; hence $(\alpha - \beta)z$ is divisible by p.
- Since $z \neq 0 \mod p$, we know that z is not divisible by p; it follows that $(\alpha - \beta)$ is divisible by p.
- This implies $\alpha = \beta$. □

Bonus fact. Can replace "at most one" with "exactly one" in above fact.
Pf idea. Euclid's algorithm.
13.9 Chernoff Bounds
Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1 + \delta)\mu] < \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^{\mu}$$

- sum of independent 0-1 random variables is tightly centered on the mean

Pf. We apply a number of simple transformations.

- For any $t > 0$,
 $$\Pr[X > (1 + \delta)\mu] = \Pr\left[e^{tX} > e^{t(1+\delta)\mu} \right] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$
 - $f(x) = e^{tx}$ is monotone in x
 - Markov's inequality: $\Pr[X > a] \leq E[X] / a$

- Now
 $$E[e^{tX}] = E[e^{t\sum_i X_i}] = \prod_i E[e^{tX_i}]$$
 - definition of X
 - independence
Chernoff Bounds (above mean)

Pf. (cont)

- Let \(p_i = \Pr[X_i = 1] \). Then,

\[
E[e^{tX_i}] = p_i e^t + (1 - p_i)e^0 = 1 + p_i(e^t - 1) \leq e^{p_i(e^t - 1)}
\]

for any \(\alpha \geq 0, 1 + \alpha \leq e^\alpha \)

- Combining everything:

\[
\Pr[X > (1 + \delta)\mu] \leq e^{-t(1+\delta)\mu} \prod_i E[e^{tX_i}] \leq e^{-t(1+\delta)\mu} \prod_i e^{p_i(e^t - 1)} \leq e^{-t(1+\delta)\mu} e^{\mu(e^t - 1)}
\]

previous slide inequality above \(\sum_i p_i = \E[X] \leq \mu \)

- Finally, choose \(t = \ln(1 + \delta) \).
Chernoff Bounds (below mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu / 2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13.10 Load Balancing
Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\lceil m/n \rceil \) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?
Load Balancing

Analysis.
- Let $X_i =$ number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$
- Thus, $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c - 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$
- Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e^\gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

- Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $e^\gamma(n) = \Theta(\log n / \log \log n)$ jobs.

Fact: this bound is asymptotically tight: with high probability, some processor receives $\Theta(\log n / \log \log n)$ jobs.
Load Balancing: Many Jobs

Theorem. Suppose the number of jobs $m = 16n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability every processor will have between half and twice the average load.

Pf.
- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

$$
\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n\ln n} < \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n^2}, \quad \Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{\delta}{2}(\frac{1}{2})^2(16n\ln n)} = \frac{1}{n^2}
$$

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1 - 2/n$.

13.5 Randomized Divide-and-Conquer
Quicksort

Sorting. Given a set of \(n \) distinct elements \(S \), rearrange them in ascending order.

```plaintext
RandomizedQuicksort(S) {
    if \(|S| = 0\) return

    choose a splitter \( a_i \in S \) uniformly at random
    foreach (\( a \in S \)) {
        if (\( a < a_i \)) put \( a \) in \( S^- \)
        else if (\( a > a_i \)) put \( a \) in \( S^+ \)
    }
    RandomizedQuicksort(S^-)
    output \( a_i \)
    RandomizedQuicksort(S^+)
}
```

Remark. Can implement in-place.

\[O(\log n) \text{ extra space} \]
Quicksort

Running time.
- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_1 < x_2 < \ldots < x_n$.
Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

\[
x_7 \ x_6 \ x_{12} \ x_3 \ x_{11} \ x_8 \ x_7 \ x_1 \ x_{15} \ x_{13} \ x_{17} \ x_{10} \ x_{16} \ x_{14} \ x_9 \ x_4 \ x_5
\]

- First splitter, chosen uniformly at random
- \(S^- \) and \(S^+ \) sub-trees
Observation. Element only compared with its ancestors and descendants.

- x_2 and x_7 are compared if their lca = x_2 or x_7.
- x_2 and x_7 are not compared if their lca = x_3 or x_4 or x_5 or x_6.

Claim. $Pr[x_i \text{ and } x_j \text{ are compared}] = \frac{2}{|j - i + 1|}$.
QuickSort: Expected Number of Comparisons

Theorem. Expected # of comparisons is $O(n \log n)$.

Pf.

$$
\sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2n \sum_{j=1}^{n} \frac{1}{j} \approx 2n \int_{1}^{n} \frac{1}{x} \, dx = 2n \ln n
$$

↑

probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65N$.

Ex. If $n = 1$ million, the probability that randomized quicksort takes less than $4n \ln n$ comparisons is at least 99.94%.

Chebyshev’s inequality. $\Pr[|X - \mu| \geq k\delta] \leq \frac{1}{k^2}$.

[55]